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Abstract: A survey of machine learning problems involving exploration-

exploitation trade-o� is presented. Theoretical and practical properties of

existing algorithms for online learning tasks including K-armed bandit prob-

lem, apple-tasting and reinforcement learning are discussed. Several open

problems in this area are described and their importance is emphasized.
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1. Introduction

Machine learning is concerned with the fundamental and experimen-

tal research on the development of intelligent computer systems capable of

advanced forms for automatic improving from experience [25], [34]. One

of the main tasks of machine learning is to provide techniques, methods

and algorithms for learning, inference and explanation of natural, social and

behavioral patterns and associations.

In general, all machine learning problems can be divided into o�-line

and on-line learning. In o�-line learning, all the experience (examples) used

for learning are available at the time when the learning starts. The primary

goal is to construct a computer program (learning algorithm) that minimizes

the error when testing is performed. Although a plethora of learning algo-

rithms minimize the number of errors from experience (training error), it

is important to emphasize that this number is not necessary related to the

performance of the learner on the new unseen data [2].
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In an on-line learning model, learning occurs in sessions and the basic

goal is to minimize the number of mistakes during a session [1], [27] and [31].

The number of trials per session (the length of the session) can be �nite

or in�nite. In each trial, examples from experience and prior knowledge

are provided to a "learner" (learning algorithm) that chooses one of given

alternatives and performs decision. A "teacher" (an oracle from outer world)

may then submit information about quality of the decision made. In on-line

learning, learning and testing are not strongly separated. The process of

learning is continuous: every time a new knowledge is presented, a learning

algorithm re�nes hypotheses and thus adapts itself to the non-stationarity

of the environment. The on-line model seems to be more realistic compared

to the o�-line model, since it is analog to the continuous process of human

learning extending through the entire life.

During the process of on-line learning, the learner is confronted with

a dilemma: whether to exploit the knowledge acquired during the learning

process or to explore new actions through stochastic behavior instead of

deterministic one. Exploration brings potential bene�ts, if a chosen action

leads to a long-term performance improvement, but also carries latent risk,

if a chosen action is a sub-optimal. Hence, there is a problem of achieving a

well-balanced trade-o� between exploration and exploitation.

Throughout this paper, the exploration-exploitation dilemma that nat-

urally arises in various machine-learning tasks is discussed and some of the

proposed solutions and heuristics to cope with this problem are examined.

In Section 2 a mistake bound model of learning is introduced, while in Sec-

tions 3, 4 and 5 theoretical and practical aspects of the existing algorithms

for on-line learning tasks are considered, as well as related open problems. In

Section 3 the K-armed bandit problem is discussed followed by the "apple-

tasting" problem presented in Section 4 and the reinforcement learning in-

troduced in Section 5.

2. Mistake Bound Model

Many machine learning problems involve the task of classifying exam-

ples into one of possible categories (classes). These problems are referred to

as classi�cation problems. In the mistake bound model of learning [8], [34], a

learning algorithm (learner) is evaluated by the total number of misclassi�-

cation mistakes it makes before an optimal decision system (correct hypoth-

esis) is learned or before all examples available for training are exhausted. In

each trial, a training example is presented to the learner. After the learner

classi�es the given example, the teacher provides a correct answer regardless
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of the learner's classi�cation. Typically, we are interested in determining

optimal mistake bounds. Therefore, the goal is to determine the maximal

number of mistakes opt(C) made by the best possible algorithm in the case

of the worst possible sequence of examples, when the most diÆcult concept

from a class C is to be learned. In the case of binary classi�cation problems,

when all examples are assigned either a positive or a negative class, there are

two possible errors during the classi�cation. A false negative classi�cation

occurs when an example with a positive label is assigned a negative label.

A false positive classi�cation happens when a learner classi�es a negative

example as a positive one. The supremums of the numbers of false negative

classi�cation errors and the false positive classi�cation errors are denoted as

M� and M+ respectively, where the upper bound opt(C) = M� +M+ can

be easily determined [27].

Consider the on line halving algorithm [27], [30], [37], where the learner

maintains a collection of hypotheses consistent with the examples submit-

ted so far and in each trial classi�es according to the majority of "votes" in

the current collection. After true classi�cation is obtained from the teacher,

non-consistent hypotheses are removed from the collection. If there are jCj
hypotheses in a concept class C, each mistake of a halving algorithm elimi-

nates at least half of them, so if jCj is �nite, there is a �nite O(lgjCj) number
of mistakes, before either all hypotheses are eliminated (if target hypothesis

is not in class C), or a target hypothesis is learned.

A lower bound for opt(C) can be obtained using the theory of Vapnik-

Chernovenkis (VC) dimension [46], [47], [48]. According to its de�nition,

VC dimension of a class C is V C(C), if there exists V C(C) examples such

that each of their 2V C(C) possible class assignments is consistent with some

hypothesis from C. Therefore, given an algorithm prediction on a sequence

of V C(C) examples, the true class can be di�erent than the prediction on

each example. Hence, VC(C) is the lowest worst case bound for the number

of mistakes and therefore the total number of classi�cation errors is bounded

from the both sides as

V C(C) �M� +M+ � lgjCj: (1)

In a generalized mistake bound problem, Littlestone [28] investigated the

existence of a learning algorithm A that reaches M+ and M�, where M+

and M� satisfy a constraint predicate P 1. As an answer for this question,

1In general, constraint predicate is a conjunction of predicates containing M+ and

M
�

. The simplest case of a predicate is M+ +M
�

< B, representing classical mistake

bound problem, where B is the total number of mistakes.
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the SCS algorithm is proposed [28] and is shown that given constraints P

and a concept class C, the existence of the learning algorithm A implies

that M+ and M� achieved by SCS algorithm satisfy constraints P on C.

The main characteristic of the SCS algorithm is that it recursively reduces

the problem of the existence of algorithm A to the existence of the same

algorithm with a reduced input constraint P . According to [28], SCS may

require a time-consuming examination of a target concept class.

The CCS algorithm, also proposed in [28], is guaranteed to satisfy con-

straints P whenever the size of class C is suÆciently small. Nevertheless,

the problem of an eÆcient determination of the bound for the class size and

the existence of an eÆcient algorithm for the classes of an arbitrary size is

still open. Both proposed algorithms are diÆcult to implement, their com-

putational complexity is not explicitly determined and they are of a rather

theoretic importance2.

One of applications for generalized mistake bound theory is the min-

imization of a generalized loss. With the "cost" of a false negative and

false positive prediction equal to a and b, respectively, the generalized loss is

equal to aM� + bM+. Hence, its minimization is equivalent to generalized

mistake bound problem with the constraint P equal to aM� + bM+ < B.

Using the asymptotic notation [12], it can be shown [28] that in the

case of a generalized loss, the smallest B is equal to �(lgjCj), such that the

constraint is satis�ed for any sequence of trials. This generalizes a mistake

bound obtained by the halving algorithm. The existence of an algorithm,

less complex than SCS (or CCS), that would guarantee �(lgjCj) performance

bounds for the generalized loss is an open problem.

3. K-Armed Bandit Problem

The problem of the K-armed bandit [18], [22], [42], [6] can be formally

de�ned as follows: Given K generators3 of random rewards xi, i = 1; : : : ;K

with unknown probability distributions pi(xi), i = 1; : : : ;K, in each trial

during a session of the �nite length, choose one of the generators and pick

up the corresponding current reward. The goal is to determine the strategy

of choosing generators such that an expected cumulative reward is maxi-

2One of main application of these algorithms is to be subroutine of apple-tasting

generic algorithm, described in [21], thus proving tighter bound for its worst-case behavior.
3Due to analogy with one-armed bandit slot machine, in literature is preferred to

de�ne K-armed bandit as a problem of proper choice of one of arms of K-armed slot ma-

chine, instead of random number generators. However, we prefer terminology of random

number generators, since it avoids unnecessary abstraction.
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mized. This problem is closely related to the theoretic explanation of ge-

netic algorithms [18], [19], [22] that simultaneously solve K-armed bandit in

the space of binary valued patterns-schemata. In addition, K-armed bandit

problem is closely associated with the theory of dynamic allocation indices

and stochastic scheduling tasks [17].

The performance of a learning algorithm in the K-armed bandit prob-

lem and its generalizations are measured by regret, de�ned as a di�erence

between the best possible cumulative reward obtained by a sequence of op-

timal generator choices in given sessions and an actual cumulative reward

achieved by the algorithm. The task is to minimize the regret, considering

its worst-case bounds as functions of the number of trials in session T and

the number of generators K.

A naive strategy to solve the K-armed bandit problem is a greedy strat-

egy, where the rewards from the generator i that had the highest average

reward Qt(i) in the past are always chosen. Since the expected reward esti-

mation obtained by averaging actual rewards is only an approximation, and

a greedy strategy selects a single generator (that appeared to be the best),

the behavior of other generators cannot be properly explored and the esti-

mates of their expected rewards may not be adequately adjusted. However,

it is still bene�cial to explore behavior of other generators, although they

do not appear to be optimal based on the current information. Therefore, a

trade-o� between exploration and exploitation is very often necessary, and

the methods to achieve it include [42]:

� " � greedy strategy: instead of always selecting an action having the

maximal current average reward, choose among other actions with

a small prede�ned probability ". This strategy achieves the better

exploration-exploitation trade-o� if the variances of the distributions

pi(xi) are higher, since the action with the currently largest average is

not necessarily the optimal one. Oppositely, if these distributions have

zero variance, a greedy algorithm is the optimal, since the expected

current reward estimation is always equal to its true value. A further

improvement includes reducing " over time and making a learning strat-

egy gradually greedier as the estimation becomes more con�dent.

� Softmax action selection using Boltzman distribution: the probabil-

ity that generator i is chosen at the moment t is proportional to

exp(Qt(i)=�(t)), where �(t) is a positive function decreasing with t and

Qt(i) is the highest average reward. At the beginning of the session,

when "temperature" �(t) is high, transitions between actions mimic

random walk because of approximately equal choice probabilities. On
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the other side, with increased time t, it can be assumed that an estima-

tion of expected rewards through averaging is approximately correct,

so the di�erence between actions regarding their rewards can be em-

phasized by decreasing �(t). It can be shown [22] that in the optimal

(but unrealistic) case the numbers of trials devoted to the best and to

the other generators should be exponentially related, and therefore a

heuristic applied in softmax selection seems to have a solid theoretic

foundation.

� Reinforcement comparison: For each action a, a value p(a) called

preference is maintained. When an action occurs, the preference is up-

dated as p(a) = p(a)+� � (xi� �r) where �r is the average reward through

all actions in the previous trials and � is a coeÆcient of proportionality.

As a result, whenever an action results in the reward higher than the

average, its preference increases and vice versa. Similar to softmax

action comparison, the probability that an action is chosen is propor-

tional to exp(p(a)). The variant of this method, called pursuit method

[42], combines both preferences and averaged rewards per each chosen

generator.

It can be proven [3] that the upper bound for regret in K-bandit problem

is O(lgn), where n is the length of the session.

When the K-bandit problem is non-stationary, i.e. when parameters of

the distributions pi(xi) vary in time, it is convenient to introduce weighted

average of rewards, where more recent rewards receive exponentially higher

weights. Explicitly, the recurrent formula for current average reward after k-

th execution of action a is: Qk+1(a) = Qk(a)+ �(rk+1�Qk(a)), where more

recent awards are emphasized, such that the non-stationarity of distributions

can be tracked.

3.1 Adversarial K-armed bandit problem

The classical K-armed bandit problem presumes the existence of proba-

bility distributions independent of the learner behavior and associated with

particular random generators xi, i = 1; : : : ;K. In [4] the adversarial model

of a K-armed bandit is considered, where the teacher has a complete control

on the assignment of rewards to each of the random generators. In addition,

the teacher can be non � oblivious by allowing the rewards to depend on

the learner's actions. All the results obtained for non-oblivious teachers are

also valid for a less challenging case of an oblivious teacher, where reward

assignment may depend only on time (in the case of non-stationarity).

The K-armed bandit problem can be viewed as an example of a partial-
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information game, where at time step t the learner obtains a reward only

from the generator i. In the case of a full information game, after de-

termining which generator to choose, the learner knows the rewards of all

generators. Assuming an appropriate choice of a coeÆcient � and rewards

con�ned in the interval [0,1], the hedge algorithm [4] guarantees O(
p
T lnK)

regret, where T is the length of a session. For each random generator

i, the hedge algorithm maintains the score si(t) representing the sum of

all rewards associated with the generator i up to the time step t. At the

full information game, all rewards are available regardless of the actual

learner decisions. The hedge algorithm chooses a generator randomly ac-

cording to the probability density that is proportional to (1 + �)si(t). Here,

one can easily recognize the same ideas as in softmaxmethod for a standard

K- armed bandit problem.

The hedge algorithm serves as a basis for Exp3 algorithm that works for

the case of partial information game i.e. for adversarial K-armed bandit

problem. The idea of Exp3 algorithm is to add a random component to

the probability distribution obtained from the hedge algorithm. Having

obtained a reward for a chosen generator it, a simulated reward vector is

established, containing rewards for all generators (not only the reward for

the chosen one!). Assuming that pj(t) is the probability obtained from the

hedge algorithm that j � th generator is to be chosen, the probability of

drawing j � th generator in Exp3 is

p̂j(t) = (1� )pj(t) + 
1

K
: (2)

In the extreme case when  = 1, the choice of a generator is completely

random and independent of the rewards in the past. The weighted com-

ponent =K is introduced to "soften" the decision of the hedge, since the

rewards that are inputs of the hedge are not actual, but simulated.

As proposed in [4], components of a simulated reward vector are

x̂j(t) =

8<
:



K

x̂i(t)

p̂i(t)
; if j = it

0; otherwise

(3)

The normalization of x̂j(t) by the probability p̂it(t) is justi�ed with the

necessity to compensate infrequent occurrence of particular choices. Specif-

ically, if the generator it is chosen with probability p̂it(t), it will be chosen

once per (1=p̂it(t)) trials on average. Therefore by introducing the normaliza-

tion factor we account for the trials when a generator is not actually chosen
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(and when a simulated reward corresponding to the generator is 0). The

remaining part of normalization coeÆcient is chosen to con�ne simulated re-

wards in range [0,1], thus providing O(
p
T lnK) regret. An interesting open

problem arises regarding the existence of an alternative value assignment for

simulated reward vector x̂j(t) (particularly when j 6= it) that may lead to

an improved upper bound for regret.

Setting appropriately parameters  (for Exp3) and � (for embedded

hedge algorithm), it is possible to achieve O
�
T 2=3(K lnK)1=3

�
regret in a

session of T steps. In general, when rewards are within a �nite interval

[a,b] instead of [0,1], the achieved regret is
�
(b � a)T 2=3(K lnK)1=3

�
. The

computational complexity of Exp3 and hedge algorithms is rather small. In

each trial, there are �(K) computations of probabilities and score updates

in the hedge and �(K) computations of probabilities and simulated rewards

in the main routine of the Exp3 algorithm.

If the rewards in each trial are bounded, the maximal expected re-

ward is O(T ) and it inuences the values of the parameters  and � in

the Exp3 algorithm. When T is not known in advance, it is diÆcult to

estimate the maximal expected reward, so a modi�cation of Exp3 is neces-

sary. An algorithm Exp3:1 [4] is such a modi�cation, where sessions occur

in rounds and in each round a current maximal expected reward is main-

tained. At the beginning of the n � th round, the parameters  and � are

computed according to the current maximal expected reward that is set to

2n. The score update is performed similar as in Exp3. Whenever a score

for a generator is approaching the current maximal expected reward, n is

increased by 1 and the next round is started. This algorithm guarantees

O
�
T 2=3(k lnK)1=3+K2(lnK)1=3

�
regret [4]. For a suÆciently large number

of trials, when T = 
(K5=2), the regret for the Exp3:1 procedure achieves

asymptotically the same bound as for the Exp3 algorithm.

The problem of a tight lower bound for the regret de�ned here4 is still

open. In [4], a lower bound is shown using the following reward distribu-

tion. Let the probability that a "good" random generator generates reward

1 is equal to 1=2 + aT 1=2K1=2, where a is a small positive constant. All

other K � 1 generators are "bad" having equiprobable rewards 1 or 0. It

is claimed [4] that there is a constant probability that the "good" genera-

tor is sampled exactly 2T=K times during the session of the length T and

4The lower bound for regret, de�ned against the best expected strategy, is proven to

be 
(lgT ) while there exists an algorithm that achieves O(lg2T ) regret for oblivious and

some restricted cases of a non-oblivious teacher[10]. As we can see, achieved boundaries

in this case are relatively tight.
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hence that the total cumulative reward is at most T=2. Therefore, the di�er-

ence of cumulative rewards between "bad" and "good" random generators is

not big enough to discriminate generators with a suÆcient con�dence. This

conclusion leads to 
(T 1=2K1=2) expected regret of any algorithm on this

distribution for suÆciently large K and for T � K. Another upper bound

for regret, 
(
p
T lgK), follows from the fact that learning by mixture of

experts is a generalization of adversarial K-bandit problem [11].

3.2 K-armed bandit problem and

modeling of a mixture of experts

K-armed bandit problem can be further generalized to model learning

by a mixture of experts [23]. The task of the learner is to perform a binary

classi�cation at each trial5 generating the class prediction ŷ based on the

probability of a positive classi�cation provided by each of K experts. After

a classi�cation is performed, the learner is supplied with the actual class

label y. Unlike the adversarial K-armed bandit problem, where the learner

is supposed to obtain reward from a chosen generator, here, we assume that

the teacher submits decisions and rewards for each expert. On this way the

"malicious" teacher can set expert decisions to further confuse the learner.

Opposite to the K-armed bandit, where only one of generators is chosen on

each trial, here a mixture of expert decisions is allowed. A regret per trial "

is de�ned as absolute di�erence of the true classi�cation and the decision of

the learner: " = jy � ŷj.
The worst regret in the case of a mixture of experts is 
(

p
T lgK), as

shown in [11]. This means that in the worst case any mixture of experts

makes at least 
(
p
T lgK) errors more than the best expert (if an expert

provides a hard 0/1 decision instead of probability). This result is achieved

through the game theory methods [36], where the decision process can be

described as a game between the learner and the teacher. The learner has

the intention to minimize regret, while the teacher wishes to increase it as

much as possible.

In addition to this theoretical boundary, a practical algorithm to achieve

�(
p
T lgK) worst-case regret is also proposed in [11]. At each step of the

algorithm, the output prediction is based on the linear combination of prob-

5In [4] a more general case, when learner provides fuzzy decision (the probability of

a positive class label) is considered; since lower bound is valid for an arbitrary learner, it

is also valid for a learner that perform a hard decision, providing probabilities 1 or 0.
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abilities �i that represent outputs of particular experts

ŷ = F
�X

wi�i

�
: (4)

Here, the weights wi are updated as

wi(t+ 1) = wi(t)U("); (5)

and normalized to have the sum equal to 1 before the next trial. U(") can be

an arbitrary function that satisfy the following condition: �" � 1� (1��)",

for all " 2 [0; 1]. If we choose U(") = 1 � (1 � �)", the rule for updating

the weights reduces to wi(t+1) = wi(t)� (1��)"wi(t) which resembles the

LMS rule [51], where the error is multiplied by an input vector, instead of

a weight. If U(") = �", the update rule resembles the weighted majority6

algorithm, where " 2 f0; 1g.
Similar to U("), shape of the function F for mapping a weighted sum of

expert-predicted probabilities into the learner prediction in (4) depends on

�. Since weights wi are normalized, the weighted sum r of probabilities �i in

(4) is always in [0,1] range. The function F satis�es the following inequality

1 +
ln((1 � r)� + r)

2 ln(2=(1 + �))
� F (r) � � ln(1� r + r�)

2 ln(2=(1 + �))
; for all r 2 [0; 1] (6)

where F has the following form

F (r) =

8><
>:

0; r � 1=2 � c

1=2� (1� 2r)=c; 1=2 + c � r � 1=2 + c

1; otherwise

(7)

and parameter c is de�ned as

c =
(1 + �) ln(2=(1 + �))

2(1 � �)
: (8)

Method for selecting the coeÆcient �, discussed in [11], is out of scope of

this paper.

6In a weighted�majority algorithm [29] decision in each trial is performed according

to the classi�cation of hypotheses that have the maximal sum of weights. After obtaining

a correct answer from teacher, weights of incorrect hypotheses decrease as multiplied by

a constant learning rate � < 1. By setting � = 0, weightedmajority algorithm reduces on

halving. Weighted majority algorithms with adaptive learning rates are discussed in [5].
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It is important to observe that constraints (6){ (8) cannot be ful�lled

by a step function, de�ned as F (r) = 0, r � � and F (r) = 1, r > �.

Therefore, the decision of this algorithm will always be fuzzy. An interesting

open problem would be to determine the existence of an algorithm with 0/1

output having �(
p
T lgK) asymptotic behavior. Recall that the weighted�

majority algorithm o�ers a mistake boundO(M+lgK) whereM is a mistake

bound of the best algorithm in a pool of K experts.

4. Apple Tasting Model

In the mistake-bound model, a learner gets the true class label from the

teacher regardless of its prediction. In contrast, in the apple tasting model

[21] the learner gets the true class label from the teacher only if the example

has been classi�ed as positive by the learner. The name of this learning

model originates from the following real world situation. When a person

buys apples, she/he tries to judge about taste by looking at each apple: if

an apple is not chosen, the person cannot know whether it is really tasty (and

hence whether her/his selection was correct)7. The aim imposed to an apple

tasting algorithm is the same as in the case of the mistake-bound model: to

achieve a minimal possible loss, measured as the number of miss-classi�ed

trials in a session.

An obvious strategy for solving an apple-tasting problem is to decide a

positive class in certain cases when "a common sense" governs toward neg-

ative decision and thus to examine whether "a common sense" was correct.

This leads to the generic apple� tasting algorithm, Fig. 1.

Generic apple-tasting algorithm ( )

� For each trial

�Apply a decision algorithm A to predict a class label c.

if c = 1,

predict the positive class.

else

with probability p predict the positive class, and with

complementary probability 1� p predict the negative class.

7Further examples include: a bank should decide whether to issue a credit card to

a person (if the card is not issued, bank cannot conclude whether the person would be

a good customer); a company decides whether to send a potential customer a mail o�er.

If not sent, company cannot decide whether the ad would be successful and convince a

customer to purchase goods.
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Fig. 1. Generic apple-tasting algorithm

Using generic apple � tasting algorithm the learner can get informa-

tion whether its decision strategy works correctly for negative classi�cation

by exploring cases on which teacher response does not provide a feedback.

Here, the main issue of exploration-exploitation dilemma is to determine p.

Assume that the algorithm A does not make negative mistakes, i.e. that

its negative classi�cation is always true. Then, it does not make sense to

randomly predict positive when A decides negatively. On the other side, if

negative mistakes are frequent, probability p should be larger. In [21], the

probability p is set to
p
M�=T , assuming that the number of trials T as well

as performance of A is known. This leads to a O(M+ + 2
p
M� � T ) upper

bound for expected number of errors of generic apple� tasting algorithm.

This upper bound holds for even more sophisticated apple tasting algorithms,

including an algorithm that can modify its decisions corresponding to infor-

mation obtained from the teacher or an algorithm with the probability p

decreasing in time as more information about the learner's ability is accu-

mulated to correctly provide a negative classi�cation.

An interesting problem is to estimate the optimal ratio M+=M� for an

algorithm A embedded in generic apple�tasting algorithm. In other words,

given a mistake bound M+ +M� for an algorithm A, the optimal balance

between negative and positive mistakes should be determined. Given M�

negative mistakes, the lower bound for positive mistakes M+ is established

as M+ �M�

�
1=e � jCj1=(M��1) � 1

�
, where jCj is the size of the hypothesis

class8. Let us de�ne algorithm A(k) as on Fig.2.

A(k)
If k = 0
predict positive if and only if at least one hypothesis,

from the set of hypotheses Ct consistent with the previous

trials, predicts positive;

else

if A(k) did not make false-negative mistake

predicts positive if and only if at least 	k

�
	�1
k�1

(j C j)
�

hypotheses
1
in Ct predict positive;

else call A(k � 1);

Fig. 2. A recursive decision algorithm embedded in generic
apple-tasting algorithm.

8This theory is applicable only on �nite classes of hypotheses.
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It is easy to see that A(0) does not make false-negative mistakes. If

at least one of hypotheses from Ct votes is positive, A(0) decides positive
9

so there is no risk that we might incorrectly perform a negative decision.

By mathematical induction A(k) can be concluded to make no more than

k =M� false-negative mistakes. Also by induction can be shown that A(k)

makes at most M�

�jCj1=(M�1) � 1
�
positive missclassi�cations10 and also

that an expected mistake bound of O
�
ln(1 + ln jCj= lnT )

p
T ln jCj= lnT�

errors in T trials can be achieved. The main problem in a practical realization

of A is that it must evaluate and count outcomes of all hypotheses in set Ct,

which can have the exponential size.

As we have seen, an upper mistake bound can be established by con-

struction of an apple- tasting algorithm based on a standard algorithm

for on-line learning with mistake bounds. In contrast, by construction

of a standard mistake bounds algorithm based on an apple- tasting al-

gorithm, it is possible to compute a lower bound for the maximal ex-

pected number of mistakes in any apple-tasting algorithm. In [21], for

any standard algorithm on a �nite set of samples and a de�ned hypoth-

esis class, if there are either at least M� false-negative or M+ false-

positive errors, it is proven that the maximal expected number of errors

in an apple tasting problem is 
(min(M+;M�bT=(M+ +M� � 1)c)). Us-

ing generalized mistake bounds and this reduction technique, tight bounds

�
�
min(T; jCj;

p
T ln jCj= ln(1 + T= ln jCj)� are obtained in [28]11.

Observe that upper and lower bounds mentioned above are rather pes-

simistic: they are valid even for a "malicious" teacher (gives always the most

diÆcult examples). Nevertheless, if there is no adverse inuence of learner's

behavior on the sequence of examples submitted by a teacher, i.e. if a learner

receives training samples randomly, it can be proven that the expected mis-

take bound of an apple-testing algorithm is O
�p

V C(C) � T � for �nite-size
hypothesis classes (here, V C(C) denotes the V C dimension of a hypothesis

class discussed in Section 2).

One of open problems in an apple tasting model of learning is the poten-

9Crucial assumption here is that at least one hypothesis from the class jCj is con-

sistent with all examples.
10Here, ratio M+=M� decreases with an increase in M

�

, whereas in the case of

Winnow algorithm [27] the ratio is practically constant asM+ � (1=���)=��M
�

+�(1=�)

where � < 1 is a learning parameter. This implies that Winnow algorithm is probably

not appropriate for embedding in an apple-tasting algorithm.
11Observe similarity of these bounds and the regret bound for K-bandit problem,

which opens the question of similarity of these two problems that is briey discussed in

[21].
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tial computational complexity improvement for theoretic algorithms primar-

ily used to prove upper error bounds. The challenge is to �nd an approximate

algorithm with similar error bounds, but with a much smaller complexity. If

grouping consistent hypotheses according to their classi�cation of a partic-

ular training sample were possible without actual hypotheses evaluation on

the sample, the proposed algorithm A(k) would become feasible regardless

of the hypothesis class size.

Intuitively, a learning algorithm that has a large M+=M� ratio will

perform well as an apple tasting algorithm (since less attention should be

paid to undetectable false-negative mistakes). Such an algorithm could be

constructed using a generalized loss [28]. Another interesting possibility is

to estimate on line the probability that a given sample is positive (or nega-

tive), and to apply cost-sensitive classi�ers by setting a cost of false negative

mistakes higher. A similar idea is used in [14] for an o�-line classi�cation,

using bagging [9], where the predictors built on di�erent samples randomly

drawn from training set are combined in the hope that the accuracy of the

ensemble of predictors is greater than the single predictors. The main prob-

lem here is to adapt bagging to on-line learning. One of possible ideas is

to have for each learner in an ensemble a �xed size bu�er and with some

probability to enable a replacement of a random sample from the bu�er with

each new training sample. An additional problem in this realization is the

computational complexity of ensemble algorithms.

It would be interesting to generalize apple-tasting problem for multiple

choices. Another possible generalization is to introduce probabilities qi that

the teacher will respond with a correct class label when learner's decision is

a certain class i (in an apple-tasting model considered here, q0 = 0, q1 = 1).

This would lead to real-life situations where teacher's response always occurs

with some uncertainty.

5. Reinforcement Learning

Reinforcement learning [42] addresses the problem how an autonomous

agent that senses and acts in its environment can learn to behave appro-

priately and to choose an optimal action to achieve its goals. The agent is

moving through a �nite state space and in each state it can perform one of

the pre-speci�ed actions. Each time the agent performs an action in its en-

vironment, a transition to a new state occurs, and the environment provides

a reward or penalty to indicate the desirability of the proposed actions. For

example, when training the agent to play a game, the trainer might provide

a positive reward when the game is won, negative reward when it is lost, and
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zero rewards in all other states. The task of the agent in reinforcement learn-

ing is to create a strategy for learning from these indirect, delayed rewards

and to choose sequences of actions that produce the maximal cumulative

reward.

In order to prevent an unlimited growth of cumulative reward for in�nite

length sessions and to introduce a real-life fact that it is good to get a reward

as soon as possible, we introduce a discounting. Considering discounting, the

cumulative reward is de�ned as

R =
X
k

krk; 0 <  < 1; (9)

where rk is a current reward at the moment k, and  is a constant that

determines the relative value of delayed versus immediate rewards. It can

be observed that the idea of discounting is similar to the emphasizing of

recent weights in the ordinary K-armed bandit problem.

In general, both transitions to new states due to actions and related

rewards are stochastic. For each action a de�ned in a state s, the transition

to a new state s0 occurs with a pre-speci�ed probability and results with a

random reward that satis�es a de�ned probability distribution.

A general reinforcement learning problem is determined by:

� Set S of states s;

� Set A of actions a;

� Policy �, speci�ed by probability �(s; a) that the action a will be taken

at state s. The policy is deterministic when for a �xed state s, �(s; a)

is a non-zero probability for exactly one action: the action in each state

is uniquely determined by the chosen policy. Otherwise, the policy is

stochastic. In addition, every policy � is speci�ed by the probability

P a
ss that during the action a, the transition from state s to state s0 will

occur and by expected rewards R�
ss0 in the transition from s to s0 under

the action a.

The value V �(s) is de�ned as the average cumulative reward R when

starting from state s and following the transition strategy determined by

policy �. The value functions V �(s) satisfy the following system of Bellman

equations [42]:

V �(s) =
X
a2A

�(s; a)
X
s02S

P a
ss0

�
(Ra

ss0 + V �(s0)
�

for all s 2 S (10)

In addition, the action-value functionQ�(s; a) is de�ned as the expected

cumulative reward if the action a is taken in state s and followed by actions

determined by policy �.
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To properly model a problem using reinforcement learning paradigm,

the it has to satisfy the following Markov property: the next state and the

current reward depend only on the current state and the currently performed

action. Therefore, each state should contain all information from the past

that is relevant to the decision of feature behavior (i.e. what action needs

to be undertaken). Since K-armed bandit and similar problems can have

in�nite sessions and since information (rewards) from the beginning of the

session may be relevant to proper decisions in future, modeling K-armed ban-

dit problem with reinforcement learning seems to be improper. It is an open

problem whether reinforcement learning can be reduced to K-armed bandit

problem, and whether is possible to impose error bounds using such reduc-

tion. An interesting relation between reinforcement problem and mistake-

bound algorithms is explored in [33].

Traditional applications of reinforcement learning involve game play-

ing [43], robot control [13, 32, 40] and distributed agents [38], while recent

research includes new applications such as on-line clustering [26], network

routing [45, 52], wireless [44] and �nancial market [35].

5.1 Properties of reinforcement learning algorithms

Standard methods for solving reinforcement learning problems consist

of two steps [42]:

� Policy evaluation, where the value functions V �(s) (or action-value func-

tions Q�(s; a)) are determined for the current policy �;

� Policy improvement (exploration), where the policy � is updated to-

wards the higher levels of the value function or the action-value func-

tion.

It is interesting to notice that this schema is similar to expectation-

maximization algorithm [15] since the value computation in the policy eval-

uation phase is followed by the maximization in the improvement phase. The

policy evaluation is typically performed through an iterative process, stopped

when either the update in successive iterations is smaller than a pre-speci�ed

value or the pre-speci�ed number of iterations is reached. The extreme case

of the later stopping criterion, known as generalized policy iteration (GPI),

occurs when only one iteration is performed in a policy evaluation phase and

it is frequently exploited in reinforcement learning algorithms.

Reinforcement learning algorithms can be designed to perform either

on-policy or o�-policy. When in on-policy regime, the learning algorithms

attempt to evaluate and/or improve the policy currently used for making

decisions. In contrast, when perform o�-policy, the learning methods can
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estimate value functions of one policy while following another one in the state

transitions. The o�-policy techniques can explore larger classes of policies

but typically perform worse in on-line learning, as compared to on-policy

methods.

According to the policy evaluation method, three major classes of rein-

forcement learning algorithms can be distinguished: dynamic programming

(DP) methods, Monte-Carlo (MC) methods and Temporal Di�erence (TD)

learning.

Dynamic programming. In this method, policy evaluation is based

on an iterative solution of Bellman equations (10), while policy improvement

is accomplished by a greedy approach, where a policy is chosen to maximize

the current action-value function. The time complexity of dynamic program-

ming (DP) methods in a worst case is a polynomial in number of states and

actions as opposite to the extensive search, which is exponential in the num-

ber of states. However, the method is still not practical for problems with

a huge number of states. Fig.3 presents a GPI version of DP method with

one iteration per policy evaluation.

DP-GPI(A,S)

� For all states s initialize V (s) to arbitrary values;

� Repeat until convergence:

For each state s

1. Update the estimated value

V (s) = maxa
P

s0
P a
ss0
�
Ra
ss0 + V �(s0)

�

2. Update the policy in s such that the action that maximises

the value function is chosen:

�(s) = maxa
P

s0
P a
ss0
�
Ra
ss0 + V �(s0)

�

Fig. 3. Dynamic programming with generalized policy iteration
(DP-GPI) reinforcement learning algorithm.

Monte-Carlo (MC) Methods. MC methods are attractive when

only action value estimates for some states are necessary to be traced. The

key idea is to estimate the action-value function Q�(s; a) as the average of

cumulative rewards obtained by repetition of the same speci�ed action a in

the state s during on-line or simulated evaluation of the current policy. The

policy �, which can be stochastic or deterministic, is then adjusted to reect

the changes in the estimated action-value function.

In generic MC reinforcement learning algorithms, the policy evalua-

tion phase consists of an in�nite number of iterations and each state-action
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pair can be a starting point for the session with a non-zero probability (the

assumption of exploring starts). The in�nite number of iterations can be re-

duced to one step of evaluation performed per each session using GDI-style

MC methods. Releasing the exploring starts assumption leads to the on- pol-

icy methods, where the e�ect of random exploration of states and actions is

achieved through the application of stochastic policies (Fig.4). Hence, such

methods cannot guarantee that the obtained stochastic policy is the best

considering overall performance. As an alternative, an o�-policy version of

MC algorithm can be used. It can be shown [42] that o�-policy algorithm

for determining optimal deterministic policy � can be obtained by applying

the variant of the algorithm, presented in Fig. 4, on a stochastic policy �0.

On-policy MC-GPI(A,S)

� Choose an arbitrary stochastic policy �;

� For all states s and actions a initialize Q(s; a), �(s; a) to

arbitrary values;

� Initialize set Returns(s; a)<-empty set.

� Repeat until convergence;

1. Generate a session using policy �;

2. Policy evaluation:

� For each pair state s-action a appearing in session:

- Append cumulative reward R after the first occurrence of the

pair state-action into set Returns(s; a);
- Compute a new action-value function Q(s; a) = average(Returns(s;a))

3. Policy improvement:

� For each state s in the session:

- Find the action a? that maximizes Q(s; a);
- Re-adjust stochastic policy � such that the action a? has the

highest probability to occur under policy:

�(s; a?) > �(s; a) for all a 6= a?.

Fig. 4. On-policy Monte Carlo algorithm with generalized policy iteration.

Temporal di�erence learning. The main idea of these methods is to

update the action-value functionQ(s; a) (or the value function V �(s)) during

each state transition from s to s0, using a current reward r and the functions

Q(s0; a) or V �(s0) in the next state s0. The update rule is similar to the

rule used in the Least Mean Square (LMS) algorithm [20]. In "on-policy"

version of TD learning, shown in Fig 5, the current action value function

Q(s; a) is updated toward its estimated value Q̂(s; a). In Q-learning [42,

49, 50], as "o�-policy" variant of TD learning, in each state s, instead of

the current action-value function Q�(s; a), the information of the currently
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best cumulative reward for performed action a is kept independently of the

current policy. In this algorithm, the update rule for policy improvement

form Fig. 5 becomes: Q(s; a) = Q(s; a) + �
�
r + maxa0 Q(s

0; a0) � Q(s; a)
�
.

Additional improvements of TD learning algorithms are possible by including

domain information [42] and function approximations for the eÆcient storing

of action-value function [7] and by integrating multi-step methods [49].

On-policy TD-GPI(A,S)

� Choose an arbitrary stochastic policy �;

� For all states s and actions a initialize Q(s; a), �(s; a) to

arbitrary values;

� Repeat until convergence;

1. Generate a session using policy �. Initialize s as the first

state in session and choose action according to the policy.

2. For each step in session while s is not the last state in a

session

2a. Policy evaluation:

- Take action a and observe current reward r and the next state s0;

- Choose next action a0 in s0 using the policy derived from Q;

- Compute the estimate Q̂(s; a) of the action-value function as:

Q̂(s; a) = r + Q(s0; a0);
2b. Policy improvement:

- Update Q(s; a) toward Q̂(s; a): Q(s; a) + �
�
Q̂(s; a)�Q(s; a)

�
,

where � is a learning rate;

- Find action a? that maximize Q(s; a)
- Re-adjust stochastic policy � such that action a? has the

highest probability to occur (�(s; a?) > �(s; a) for all a 6= a?);

2c. Iterate: s = s0, a = a0.

Fig. 5. On-policy temporal di�erence algorithm with generalized
policy iteration (TD-GPI).

>From Table 1, where the properties of presented reinforcement learning

algorithms are summarized, it can be observed that dynamic programming

methods can operate by estimating and updating the value functions V �(s)

only when all model parameters (transition probabilities P a
ss0 and expected

rewards R�
ss0) are known. In such scenarios, DP methods can also perform

o�-line. In contrast, only sample sequences of states, actions and current

rewards are needed for Monte Carlo (MC) and Temporal Di�erence (TD)

methods that operate by keeping track of the action-value functions Q�(s; a)

instead of the value functions V �(s).

When reinforcement learning algorithms perform bootstrapping, the up-
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Table 1: Comparison of major reinforcement learning algorithms.

Known O�- Step- O�-

model line wise Policy

Algorithm param- learn Boots- Policy learn Convergence

eters ing traping Update ing

Dynamic (DP)

Programming Yes Yes Yes Yes | Guaranteed

Monte-Carlo No proof for

(MC) No No No No Yes GPI methods

Temporal

di�erence (TD) No No Yes Yes Yes Guaranteed

dates of the value functions or the action value functions at any state s de-

pend on the estimates from other states. DP and TD methods belong to

this category of algorithms, while in MC methods, the value functions or

the action value functions are estimated and updated at each state indepen-

dently. While policy evaluation and policy improvement for MC methods

are intermixed on a session-by-session basis, in DP and TD methods the

updated values and policies at one state are processed step-wise and can be

immediately exploited for the next state transition. Therefore, TD methods

are typically more suitable than MC algorithms when learning occurs in long

sessions.

Convergence of major reinforcement learning algorithms has been ex-

tensively discussed in literature [39, 42, 50]. The convergence of dynamic

programming methods guarantees achieving the optimal deterministic pol-

icy and follows from the policy improvement theorem de�ned in [42]. The

theorem states that if action a, performed according to the new determinis-

tic policy �0in state s (a = �0(s)) results in the higher action-value function

than the current value function for all states s, then the new policy �0 has

higher value than the older one

8s;Q�(s; �0(s)) � V �(s) ) 8s; V �0(s) � V �(s) (11)

Using equation (11), it can be shown that the convergence is achieved when

DP values in the algorithm do not change in two successive sessions. Us-

ing the policy improvement theorem, the convergence of Monte Carlo (MC)

methods was proven only for the case when the assumption of the in�nite

number of iterations in the policy evaluation phase is satis�ed [42]. How-

ever, there is no proof of convergence for on-policy and o� policy MC variants
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based on generalized policy iteration (GPI). In these cases, the learning is

usually completed when the updates of the action-value functions in two suc-

cessive sessions are smaller than a pre-speci�ed threshold. For "on-policy"

variant of temporal-di�erence learning, there is a proof of convergence for a

suÆciently small learning rate [39]. Finally, for Q-learning, representing the

o�-line version of temporal-di�erence method, the convergence is proven in

[34, 50].

5.2 Open problems in reinforcement learning

One of the main open problems in the theory of reinforcement learning

[41] is related to convergence of Monte Carlo GPI algorithms. Although

there is a plethora of experimental evidence towards the convergence of this

method, there is still no formal proof that the algorithm converges. In

addition, there is no theoretical justi�cation whether the methods that apply

bootstrapping (such as TD learning) are faster than non- bootstrapping

ones (e.g. Monte Carlo methods). Again, both experimental evidence and

heuristic consideration suggest that the TD methods may require less time

to achieve the optimal policy in comparison to Monte Carlo methods.

Another problem in reinforcement learning is the choice of stochastic

policy. While "� greedy strategy (Section 3) is widely accepted, there is no

proof whether it is computationally more eÆcient than using other strate-

gies developed for K-armed bandit problem (e.g. softmax or reinforcement

comparison).

Additional research is also necessary to determine the theoretical re-

lationship between o�-policy and on-policy methods. O�-policy methods

typically can explore wider range of possible policies while at the same time

performing sub-optimal (stochastic) policy. Similar to this problem is the

choice of the optimal balance between policy evaluation and policy improve-

ment phases of GPI algorithms. Therefore, both problems can be viewed

as examples of typical exploration-exploitation dilemma. While DP and TD

algorithms are proven to converge when only one iteration is performed per

each policy evaluation, the number of iterations stays as a parameter of

choice for performance optimization.

Finally, in spite of recent attempts [24] to apply the computation learn-

ing theory to reinforcement learning paradigm, there are still a lot of open

questions, which include the problems how to determine VC dimension for

particular policy classes of practical importance or how to apply the boosting

algorithm [16] to the reinforcement learning.
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6. Conclusions

In this paper, a brief survey of on-line machine learning problems,

where the exploration-exploitation dilemma naturally arises, is presented.

Our emphasis was on the worst-case performance boundaries as functions of

model complexity and the number of trials in on- line learning. The study

also includes practical heuristics for achieving these boundaries and a good

exploration-exploitation balance. Also, some open problems arising in this

interesting and relatively new area are emphasized.
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