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MULTI-CRITERION OPTIMIZATION OF ROBOT

TRAJECTORIES WITH EVOLUTIONARY STRATEGIES

Matthias Ortmann

Abstract: The optimization of robot trajectories with genetic algorithms

represents a multi-criterion problem because each trajectory consists of many

points to be reached with di�erent positions of each joint. The performance

of the optimization of a multi-objective problem depends on the coding of the

problem and the used algorithm. In this paper �rst the used coding of a robot

arm is presented. Then the algorithm and three possibilities of weighting of

the various genes with three di�erent transition functions for each possibility

are introduced. In contrast a special technique of selection is presented which

performs a manipulation in the case of the selection leading to a speeding

up of the whole algorithm. Each of the presented algorithms converge to the

Pareto-optimal set by using a special criterion for the end of the optimization.

Key words: Multi-criterion optimization, robot trajectories, Pareto-optimal

solution.

1. Introduction

Real world problems mostly consist of multiple objectives which should
be optimized simultaneously. Evolutionary algorithms [1], [2] are best suited
for the optimization of problems that are too complex to be solved by exact
methods like linear programming and gradient search [3], [4]. If the algo-
rithm should �nd a solution for a problem with one objective, it mostly is
easy to �nd a solution with a good �tness in a short time. But if the algo-
rithm should �nd a solution for a multi-objective problem, the time needed
for solving increases dramatically because the sum of the various objectives
mostly is used for the selection. On the other hand optimal solutions accord-
ing to one objective, if such an optimum exists, often imply unacceptably low
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performance in one or more of the other objective dimensions [5]. A compro-
mise with acceptable results mostly sub-optimal in the single-objective sense
should be reached. In other words, the algorithm should �nd the Pareto-

optimal solution [6], [7]. Here no criterion is dominated by any other [8].
The aim of an optimization should be to satisfy all criterions and to �nd a
solution as fast as possible.

Robot trajectories are mostly generated by teach-in methods. Here the
various points of the trajectory have to be programmed with the real robot,
which is a diÆcult and time-consuming business. The results mostly are not
optimal with regard to the stress in the joints. Therefore it is much better to
program the robot o�-line by �rst making a simulation. To get comparable
or better results than in the case of teach-in, the robot and the robot cell
should be described carefully and in detail. With this model the algorithm
should work optimizing the trajectory while considering the detection of
collisions of the robot arms with obstacles [9] and other robot arms [10].

In this paper the multi-criterion problem of �nding a trajectory of a
robot arm should be investigated. The problem should be reduced to the
calculation of the trajectory of one robot, disregarding the case of collision.
First, stress should lie on the special way of coding of the robot arm. Then
the optimization criterion for the trajectory should be introduced followed
by three techniques of weighting. In contrast a special technique of manip-
ulation in the case of the selection should be introduced.

2. Description of the Problem to be Solved

First the robot arm should be described. Without loss of generality a
robot with �ve degrees of freedom plus opening and closing of the �ngers is
used. These kinds of robot arms are called globally degenerated [11]. An
abstract example of the robot used can be seen in Fig. 1. The upper arm has
the same length as the lower arm. The robot only has joints for rotational
use.

To describe the robot in a mathematical way, to each joint is assigned a
variable which is, with regard to the evolutionary algorithm, called GeneX.
The X represents the number of the corresponding joint. Each gene needs
a minimum and maximum value to avoid collisions because of the three-
dimensional shape of the links. For symmetrical reasons, the o�setvalue
which is added to the minimum and subtracted from the maximum, is the
same called GeneXmin. The described circumstances are shown in Fig. 2.
To get a higher position accuracy, the angle of 360Æ is divided into multiple
discrete steps that a variable GeneX 2 IN is justi�able. The number of steps
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Fig. 1. Coordinates of the robot arm. Fig. 2. Coordinates of a joint.

is given for each joint individually by the value of the variable GeneXscale .
As conclusion each position i of the robot can be written as follows:

Gene1 : Gene1min � Gene1 � Gene1max;2 IN

Gene2 : Gene2min � Gene2 � Gene2max;2 IN

Gene3 : Gene3min � Gene3 � Gene3max;2 IN

Gene4 : Gene4min � Gene4 � Gene4max;2 IN

Gene5 : Gene5min � Gene5 � Gene5max;2 IN

Gene6 : Gene6min � Gene6 � Gene6max;2 IN

T ime1 : point of time in ms, 2 IN

Obviously an evolutionary strategy is performed. In this representation
the point of time is added to the position of the robot. The whole vector
should be called chromosome. To get an individual, many chromosomes
are lined up at a distance of 40 ms, which is the normal time between two
positions when moving a robot arm.

start end

Chromosome1 Chromosome2 Chromosome3 � � � ChromosomeN

Gene11 Gene12 Gene13 Gene11

Gene21 Gene22 Gene23 Gene21

Gene31 Gene32 Gene33 Gene31

Gene41 Gene42 Gene43 � � � Gene41

Gene51 Gene52 Gene53 Gene51

Gene61 Gene62 Gene63 Gene61

T ime1 T ime2 T ime3 T ime1

This individual describes the whole trajectory of a transportation prob-
lem. To specify points between the beginning and the end of the trajectory
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that should be reached during the movement, further points can be added
to the trajectory. These points subdivide the path of the robot arm into
many parts called regions. These regions are smaller than the whole trajec-
tory and should therefore be optimized easier because of the smaller search
space. Another advantage is that, with the knowledge about the previous
and the following region, especially the gradient should be mentioned here,
the problem can be parallelised by distributing the regions to various com-
puters in a network or to the processors in one computer. Here the second
possibility is used. Therefore the program has a structure shown in Fig. 3.

Application

Threadhandler

Thread 1 Thread 2 Thread 3 Thread N

Fig. 3. The structure of the program.

The whole trajectory is given from the application to the threadhandler.
The threadhandler extracts the regions and distributes them to the working
threads. Here the regions are optimized by an evolutionary strategy described
below. The regions in the threads are called individuals, too. The optimized
parts are given back to the threadhandler. Here they are composed to the
trajectory and are given back to the application.

3. Optimization Criterion for the Genes

According to the last section the whole trajectory consists of many
user de�ned points with an individual distance of time. Depending on the
distance of time further points are generated between these given points.
The values of the genes of these points are initialized randomly. Now the
aim of the optimization should be a trajectory with a smooth trend especially
at the transition from one region to the other.

In principle the genes are independent from each other if only the case
without collisions of the robot with obstacles is considered. Therefore it is
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possible to calculate the �tness values for each gene independently and sum
them up to the �tness value of the individual. The �tness value FGeneX of
one gene is calculated as follows

FGeneX =

chomX
i=1

[w(i) � curvatureGeneX(i)]
2
: (1)

Here chrom is the number of chromosomes of the individual. For the
�rst and the last value of curvature in a point, the gradient of the previous
and the following region or otherwise the di�erence of the gradients to the
previous and the following point are used. w(i) is a weighting function to
get a trajectory with less stress and wear in the joints of the robot. Fig. 4
illustrates the weighting function used for eleven chromosomes.
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Fig. 4. Weighting of the chromosomes.

w(i) can be expressed in a general mathematical way as follows

w(i) =

8>>><
>>>:

2; i � 1
9

4
� 1

4
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� 1

4
+ 1

4
� i; chrom=2 � i < chrom� 2

2; chrom� 1 � i < chrom

(2)

The �tness values FGeneX of the genes are summed up to the �tness
value of the whole individual.

FIndividual =

6X
X=1

FGeneX : (3)



24 Facta Universitatis ser.: Elec. and Energ. vol. 14, No.1, April 2001

The �ttest individual is the one with the smallest �tness value. If the
evolutionary strategy should select by the �tness FIndividual, there are the
typical diÆculties of multi-criterion optimizations. In the next section three
di�erent weighting methods with three di�erent transition functions for each
method should be introduced.

4. Possibilities of Weighting the Fitness of the Genes

There surely are many possibilities for the superposition of the �tness
values of the genes to one �tness value which is meaningful for the selection.
In this paper three di�erent possibilities should be introduced. All of them
extend equation (3) to the weighted �tness value Fw

Individual

F
w

Individual
=

6X
X=1

t(FGeneX) � FGeneX ; (4)

t(FGeneX) is a transition function which is dependant on the �tness value of
each gene. These �tness functions and special weighting techniques should
be introduced now.

4.1 Fixed weighting

In the case of �xed weighting one of the three transition functions in
Fig. 5 is used for all genes. Dependant on the �tness value FGeneX the
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�tness value of each gene is multiplied by the corresponding value of the
transition function. The values Fmax and tmax are user de�ned but �xed
from the beginning of the optimization. The value of Fmin is calculated as
follows: to get a de�ned criterion for the end of the optimization, a value
FIndividual;min is de�ned. A solution of the problem is found if an individual
has a �tness value that is smaller than the given minimum. Since the value
of Fw

Individual
is the sum of the six FGeneX , the value of Fmin should be

FIndividual;min divided by six.

The logarithmic transition function performs a stretching especially of
the minor �tness values, which is most important for the speed of the op-
timization as described in section 6.2. The linear function only performs a
linear scaling for all �tness values. The quadratic function corresponds to
an upsetting of the minor �tness values.

4.2 Adaptive weighting depending on one gene

The disadvantage of the �xed weighting method is that function
t(FGeneX) is static. The function is given at the beginning without re-
garding the range of the �tness values of the genes. It must be better to
use a dynamic ranging which calculates the Fmax value with regard to the
maximum of the �tness values of all genes X of the �rst population. This
fact is illustrated in Fig. 6. The value of tmax is still user de�ned as in the
case of the �xed weighting. The value of Fmin is calculated as described
above.

4.3 Adaptive weighting depending on all genes

In the last section the transition function is dependant on only one
gene. This should be a correct method if the �tness values FGeneX are
within the same range. It must be better to calculate the transition function
for each gene individually. This possibility is performed in the case of the
adaptive weighting depending on all genes. Here, in contrast to the other
two methods, not only one transition function for all genes is used. Here
each gene X has its own weighting function. The di�erence between the
functions is the value of Fmax. It is calculated individually for all genes
depending on the value of FGeneX of the �rst population.

5. Manipulation in the Case of the Selection

The last section presents three methods for calculating the �tness value
Fw

Individual
by summing up the �tness values FGeneX of each gene with
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weighting. In this case the following selection only takes the �tness value
Fw

Individual
of the individual into account. But here is a special situation

of a multi-criterion problem. The six �tness values of the genes are nearly
independent from each other. They all describe a special path of the cor-
responding joint of the robot and for the global problem they only describe
an optimal trajectory if all paths of the genes are optimal. But there still is
the fact that each gene has its own start and end point of the regions and
of the whole trajectory. This means that the �tness values of the genes, if
no collision is regarded, are independent from each other. Theoretically the
multi-criterion optimization can be subdivided into six optimizations each
for one gene, which can be performed one after the other. This serial opti-
mization results in a great amount of time for the optimization. To avoid
this, a special kind of selection should be introduced now.

As stated the �tness values of the genes are independent from each
other. This o�ers the possibility of performing the three serial optimizations
in one parallel. This means that the recombination, the mutation and the
calculation of the �tness are performed as usual for all genes. Only the selec-
tion is slightly di�erent. Not FIndividual but the six FGeneX are relevant for
the selection. The individuals of generation n+1 are not the best individuals
of generation n as usual. The individuals of generation n + 1 are built by
�rst copying the best paths of Gene1 of all individuals of generation n then
the best paths of Gene2 and so on. The used individuals of generation n for
Gene1 must not be the same as for Gene2 and so on. This is not a selection
with biological background but a kind of manipulation in the case of the
selection for multi-criterion optimizations.

6. Results

6.1 Test conditions

For the simulations a computer with two 733 MHz PIII processors with
256 MB RAM was used. The hard disk is out of interest because the whole
optimization is performed in the RAM. The operating system is Windows
NT 4.0.

The optimization takes place in the thread structure described in Fig.
3. As described, the threadhandler distributes the regions of the trajec-
tory to the threads. Here the regions are optimized by performing a simple
evolutionary strategy in the form of
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1. initialisation of the start population
g

3. recombination: a (�; �)-strategy is performed
3. mutation: to/from each gene is added/subtracted a random

number
4. �tness calculation: calculation of the �tness according to the equations

(1) and (3)
5. selection: the best individuals are copied to the next parent

population
gwhile (best �tness value < FIndividual;min)

For the sake of simplicity a trajectory with six regions is used. Each
region has a length of 360 ms which corresponds to a number of chromo-
somes of ten for each region. The �rst three genes should be optimized from
coordinate 100 to 200 or the other way round. The genes of the wrist and
the hand are not taken into consideration for the calculation. Fig. 8 shows a
part of the whole trajectory of Gene1. The values between the user de�ned
points at 360 ms and 720 ms are generated randomly.
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Fig. 7. Part of the trajectory Fig. 8. Optimized part of the trajectory

Fig. 8 shows a part of the way of Gene1 of the optimized trajectory. The
other two genes Gene2 and Gene3 have nearly the same way. This Pareto-
optimal result can only be found because the optimization is performed as
long as the �tness value Fw

Individual
of the best individual is smaller than the

user de�ned value FIndividual;min and FIndividual;min is nearly three times
the value of the best achievable �tness of one gene X. Here the value of
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FIndividual;min is 8. Only these settings will have Pareto-optimal results.
The disadvantage of searching an individual with a �tness value smaller
than FIndividual;min is that, in case FIndividual;min is chosen too large, one
gene is dominating the other genes. If FIndividual;min is chosen too small, no
result can be found.

All genes are mutated by �fty percent. Themutation value that is added
or subtracted is generated by

mutationvalue =signature � percent �mutval (5)

signature =

�
1; 50%

�1; 50%
(6)

percent =

�
1; percentage

0; 100%� percentage
(7)

percentage is user de�ned. mutval is equally distributed and dependant on
the �tness value of the individual [12]. The time needed for an optimiza-
tion is dependant on this value. Fig. 9 shows the number of populations
needed for an optimization dependant on the mutation value1. Here a single-
objective optimization is compared to a multi-objective optimization without
weighting with regard to the needed populations dependant on the mutation
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Fig. 9. Performance comparison.

1Since an evolutionary strategy is a stochastic process, the measured numbers of

populations and the times given here and in the next sections are the mean values of 30

simulations using exactly the same set of parameters. If the mutation values are too great,

a result will not be found at all or only sometimes. If no result can be found, a maximum

of 5000 populations in each region is calculated.
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value. It is obvious that possible amounts of the mutation value are much
greater for a single-objective optimization than for a multi-objective opti-
mization. The optimal value in the �rst case is around 38 with 430 needed
populations and in the second one around 9 with 2578 needed populations.

6.2 Results of weighting

Table 1 shows the results of the three weighting techniques with the
three di�erent transition functions. The values represent the mean values
of the needed numbers of populations calculated as described above. The
values in brackets behind the population numbers are the mutation values
that are used to calculate these results with.

Table 1. Performance comparison

�xed adaptive weighting adaptive weighting

weighting depending on one gene depending on all genes

linear 2573 (8) 2601 (7) 2630 (7)

logarithmic 2469 (8) 2390 (7) 2622 (7)

squared 2602 (8) 2653 (8) 2632 (7)

With regard to Fig. 9 the amount of populations needed for a multi-
objective optimization generally is much larger than in the case of a single-
objective one. Additionally the mutation values can be chosen much greater
in the single-objective case. For each method the squared transition function
is the worst one. Because this function jolts small �tness values, the use of
this function is leading to an ine�ective superposition if one �tness value is
much smaller than the others. The logarithmic transition function is the best
solution because of the stretching e�ect on small values. In combination with
the adaptive weighting method depending on one gene, this function is the
best solution for weighting. It is eight percent faster than without weighting.
The �xed weighting and the adaptive weighting method depending on one
gene are better than the adaptive weighting method depending on all genes
because in the last case the superposition is not e�ective enough. Here
small �tness values of one gene are dominated by large �tness values of the
other genes. The adaptive weighting method depending on one gene is more
e�ective because the transition function is calculated adaptively with regard
to the �tness value of the �rst population and not �xed.

In Table 1 only the performance with regard to the number of popula-
tions is compared. Another aspect is a comparison of the time needed for
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the calculation of one population. All three weighting techniques calculate
the arrays needed for the �tness calculation in the �rst run of the optimiza-
tion. This time can be neglected in comparison to the whole time needed
for the optimization. The time for multiplying the weighting array by the
�tness values of each gene can be neglected, too. The time needed for one
population with or without weighting using a (5,25)-strategy is 0.23 ms.

6.3 Results of manipulation

Fig. 10 shows the performance of the manipulation in the case of the
selection. In contrast to the weighting methods, the mutation value can be
chosen greater but not as large as in the case of a single-objective optimiza-
tion. The optimum can be found at a mutation value of 16 with 553 needed
populations. The optimization is therefore more than four times faster than
the best weighting method because on the one hand the search space is one
third smaller and on the other hand it can be walked through much faster
because the mutation value is greater.
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Fig. 10. Performance of manipulation

Section 5 suggests the possibility of performing three optimizations se-
rially one after the other. According to section 6.1 around 1290 populations
would be needed for three optimizations. If this number of populations is
compared to the number of the multi-objective optimization with or without
weighting, the last one is clearly worse because nearly twice the number of
populations is needed. But in the case of the manipulation only 553 popu-
lations are needed for a whole multi-objective optimization, which is twice
as fast as three optimizations serially one after the other.
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In contrast to the algorithm with or without weighting, the time needed
for the optimization with manipulation in the case of the selection is not the
same because with or without weighting, the population is sorted only once
in order to be able to copy the best individuals of the children population
n into the next parent population n+ 1. In the case of mutation each gene
has to be sorted individually. This means that the time-consuming sorting
algorithm should be calculated three times. Here the algorithm ShellSort
[13] is used, which is a complex but fast sorting algorithm. The time needed
for the calculation of one population increases to 0.24 ms. That is around
four percent more than in the case of weighting.

7. Conclusion

This paper presents three methods of weighting with three di�erent
transition functions and one method with a manipulation in the case of the
selection. According to section 6.2 the way of adaptively weighting the �t-
ness values of each gene depending on one gene by using a logarithmic tran-
sition function is the fastest possibility of �nding a solution with weighting
measures and nearly eight percent faster than without weighting but two
times slower than three serial single-objective optimizations. The technique
of manipulation in the case of selection, which corresponds to a parallel op-
timization of the genes, is according to section 6.3 around four times faster
than the weighting methods because the selection is more e�ective and the
mutation value can be chosen around two times greater so that the search
space is walked through much faster. This algorithm is two times faster than
three serial single-objective optimizations. The fact that the manipulation
can only be performed in the case of independancy of the three genes should
be taken into consideration.
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