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A NEW SMITH PREDICTOR FOR CONTROLLING

A PROCESS WITH AN INTEGRATOR AND LONG

DEAD-TIME: DESIGN AND TUNING

Ljubi�sa S. Draganovi�c, Mili�c R. Stoji�c

and Milan S. Matijevi�c

Abstract: This paper proposes a new Smith predictor for controlling a pro-

cess with an integrator and long dead times. The structure comprises the

classical Smith controller, in the main control loop, and the disturbance esti-

mator, in the local minor loop. The main feature of the structure consists in

ability to reject the constant, ramp, and slow varying unmeasurable external

disturbances. The controlling structure in this paper allows more freedom in

choosing controller parameters in order to improve both the set-point response

and eÆciency of disturbance rejection.

Key words: Smith predictor, process controlling, PID controller, PI con-

troller, disturbance estimator.

1. Introduction

Smith predictor (SP) has been proposed in the late �fteens as one among

�rst structures of predictive control suggested for controlling a process hav-

ing a long dead time [1], [2]. The structure enables the closed-loop system

characteristic equation to be derived in the polynomial form, without the

transcendental term exp(�Ls) describing a time delay. It has been shown

[3] that the classical SP cannot be used for controlling a process with an inte-

grator. Namely, in the presence of integration mode 1/s within the process

transfer function, a constant disturbance produces a nonzero steady-state
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error. To overcome this obstacle, the modi�ed structure of SP has been pro-

posed in [3] by including the I-action into the main controller of PI or PID

type. For the same purposes, other modi�cations of SP has been recently

proposed [3]-[8] for compensation of the process transport lag. All of these

compensations require the setting of more parameters of the process and

main controller. See, for example, [9] where the tuning of PID controller

within the modi�ed SP is presented.

Majority of papers concerning SP modi�cations considers the possibility

of reduction of number of adjustable parameters [3]-[6], [8]. The robust PI

controller with three tuning parameters has been proposed in [6]. �Astr�om

et al. [7] suggested a new SP with disturbance estimator (DE) in which the

set-point response and disturbance response are decoupled and thus may

be adjusted independently. However, the control algorithm proposed in [7]

requires setting of six parameters in the case when the estimated value of

process velocity gain is mismatched. In [8], the structure of SP with PI

controller and joined �xed �lter is presented and the structure tuning is

performed by placing poles of a simpli�ed second order closed-loop system

characteristic equation. The comparative study of di�erent schemes of mod-

i�ed SP was given in [10] and [11].

In this paper we consider a new SP extended by DE. Unlike other modi-

�cations of SP designed to reject a constant disturbance, the control scheme

proposed in this paper enables the rejection of the constant, ramp, and a

wide class of slow varying disturbances. The tuning of proposed control

structure is based upon the application of M circle method [12] and pole

placement procedure.

2. Control System Structure

Figure 1 shows the proposed control structure, which comprises the

process, SP as a main controller, and DE, in the local minor loop, which is

used to obtain disturbance estimate d̂(t). From Fig. 1, one can easily derive

the relations between the inputs and outputs of DE. The relations may be

presented by vector equation

�
y(s)

d̂(s)

�
=

1

1 +
A(s)

C(s)
Gp(s)

2
64 [1 +

A(s)

C(s)
Gm(s)]Gp(s) Gp(s)

A(s)

C(s)
[Gp(s)�Gm(s)]

A(s)

C(s)
Gp(s)

3
75�u(s)

d(s)

�

(1)
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where the following notation is used: y(s) system output, d(s) external dis-

turbance, d̂(s) disturbance estimate, u(s) control variable, Gp(s) transfer

function of integrative process with dead time, Gm(s) nominal transfer func-

tion of integrative process with dead time, Gm1(s) nominal transfer function

of integrative process without dead time, A(s)=C(s) transfer function of dis-

turbance controller.

Fig. 1. Controlling structure of modi�ed Smith predictor.

In a particular (nominal) case when Gp(s) � Gm(s), one can derive

from (1)

y(s) =

��
1 +

A(s)

C(s)
Gm(s)

�
Gp(s)u(s) +Gp(s)d(s)

�
1

1 +
A(s)

C(s)
Gp(s)

=Gp(s)u(s) +
Gp(s)

1 +
A(s)

C(s)
Gp(s)

d(s)

(2)

and

d̂(s) =

A(s)

C(s)
Gp(s)

1 +
A(s)

C(s)
Gp(s)

d(s): (3)
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Hence, in the nominal case, the estimation error d(s)� d̂(s) becomes

d(s)� d̂(s) =
1

1 +
A(s)

B(s)
Gp(s)

d(s): (4)

In virtue of the structure of Fig. 1 and equations (2) and (3), the

following closed-loop system transfer functions are derived

y(s)

r(s)
=

Gr(s)Gp(s)

�
1 +

A(s)

C(s)
Gm(s)

�
�
1 +

A(s)

C(s)
Gp(s)

�
[1 +Gm1(s)Gr(s)] +Gr(s) [Gp �Gm(s)]

(5)

and

y(s)

d(s)
=

Gp(s) [1 +Gm1(s)Gr(s)�Gm(s)Gr(s)]�
1 +

A(s)

C(s)
Gp(s)

�
[1 +Gm1(s)Gr(s)] +Gr(s) [Gp �Gm(s)]

: (6)

In the nominal case (Gp(s) � Gm(s)), equations (5) and (6) are reduced

to
y(s)

r(s)
=

Gr(s)Gm(s)

1 +Gm1(s)Gr(s)
(7)

and
y(s)

d(s)
=
Gm(s)[1 +Gm1(s)Gr(s)�Gm(s)Gr(s)]�

1 +
A(s)

C(s)
Gm(s)

�
[1 +Gm1(s)Gr(s)]

: (8)

For the analysis in this paper, integrative industrial processes will be

considered and described by the following transfer function

Gp(s) =
K�

s(T1s+ 1)(T2s+ 1) � � � (Tns+ 1)
e��s; (9)

where K� is the process velocity gain factor, � is the process dead time, and

Ti (Ti > 0; i = 1; 2; : : : ; n) are process time constants. The process transfer

function may be rewritten as

Gp(s) =

�
K�

s
+�G(s)

�
e��s; (10)
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with

�G(s) =
k1

T1s+ 1
+

k2

T2s+ 1
+ � � �+ kn

Tns+ 1
; (11)

where residues ki (i = 1; 2; : : : ; n) are functions of velocity gain K� and

process time constants Ti. For a long process dead time, one can assume the

nominal process model as

Gm(s) =
K�

s
e�Ls; (12)

where L is an identi�ed e�ective transport lag and �G(s) in (11) is unmod-

eled process dynamics. The nominal process model without transport lag

is

Gm1(s) =
K�

s
: (13)

For an integrative process (9), the proper choice is the proportional

main controller

Gr(s) = Kr: (14)

With (12) - (14), closed-loop system transfer functions (7) and (8) be-

come

y(s)

r(s)
=
Kr

K�

s
e�Ls

1 +Kr

K�

s

(15)

and

y(s)

d(s)
=

K�

s
e�Ls

�
1 +

K�

s
Kr �

K�

s
Kre

�Ls

�
�
1 +

K�

s
Kr

� �
1 +

A(s)

C(s)

K�

s
e�Ls

� : (16)

The closed-loop system transfer function (15) has the single real pole

s = �KrK� . Thus, after setting an estimated value of K� , the desired speed

of set-point transient response can be matched by choosing an appropriate

value of proportional gain, Kr i.e., setting the desired time constant Td =

1=KrK� . From (16) it is seen that the disturbance response is governed by

roots of closed-loop system characteristic equation�
1 +

K�

s
Kr

� �
1 +

A(s)

C(s)

K�

s
e�Ls

�
= 0: (17)

Hence, after choosing the value of time constant Td, the speed of dis-

turbance rejection may be adjusted independently by synthesizing the DE

transfer function A(s)=C(s).
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3. Parameter Setting

First, we consider the case when both the reference and disturbance are

constant, r(t) = 1(t), d(t) = 1(t). Then the steady-state error is calculated

from (15) and (16) by

y(1) =
K�Kre

�Ls

s+K�Kr

�����
s=0

+
K�e

�Ls[s+K�Kr �K�Kre
�Ls]C(s)

[s+K�Kr] [C(s) +A(s)K�e�Ls]

�����
s=0

: (18)

If a chosen polynomial C(s) is stable and A(0) 6= 0, from (18) one

obtains and the steady-state error is equal to zero. Hence, the inherent

feature of the controlling structure of Fig. 1 is the ability to reject constant

disturbances.

3.1 Setting by M circles

The closed loop characteristic equation of DE is given by (17). After

choosing an appropriate value of time constant Td = 1=KrK� , the speed of

disturbance rejection is resolved by placing roots of equation

1 +
A(s)

C(s)

K�

s
e�Ls = 0: (19)

Case 1

In the simplest case, we choose A(s) = KA and C(s) = 1. Then equation

(19) becomes 1 +W (s) = 0 with

W (s) =
KAK�

s
e�Ls: (20)

For an aperiodical disturbance response, frequency characteristicW (j!)

must touch M circle of in�nite radius (indexed by M = 1) [12] as it is shown

in Fig. 2. In that case,

R = RefW (j!)g � �KAK�

!
sin(L!) = �1

2
: (21)

For relatively small values of L! in radians, and sin(L!) � L! from

(21) one obtains

KA =
0:5

K�L
: (22)
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Fig. 2. M circles in W (j!)-plane.

Case 2

In the second case, we choose A(s) = KA(TAs+1) and C(s) = 1. Now,

for an aperiodical disturbance response, the entire hodograph of

W (j!) =
KAK�

j!
(TAj!1)e

�Lj! (23)

must lie on the right-hand side of the straight line R = �1=2 in the (R; I)-

plane, where R = RefW (j!)g and I = ImfW (j!)g. The parameters KA

and TA of DE are calculated from intersection (point A in Fig. 2) of the M

circle and unit circle R2 + I2 = 1. Recall that this corresponds to the phase

margin �pm = �=3 radians or

�pm =� + argW (j!1)

=
�

2
+ arctan(TA!1)� L!1 =

�

3
;

(24)

where gain crossing frequency is calculated from

jW (j!1)j =
KAK�

p
T 2
A!

2
1 + 1

!1
= 1: (25)
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After substituting arctan(TA!1) � TA!1, from (24) one obtains

!1 =
�

6

1

L� TA
; L > TA: (26)

On the other hand, from (25) we have

!1 =
KAK�p

1�K2
AK

2
�T

2
A

; 0 � KAK�TA < 1: (27)

Eliminating !1 from (26) and (27), it is obtained

KA =
�

6LK�

1r
1� 2TA

L
+
T 2
A

L2
+
�2T 2

A

36L2

: (28)

After utilizing the �rst order Pad�e approximation exp(�Ls) � (1 �
Ls=2)=(1 + Ls=2) in (19), we assume

TA =
L

2
(29)

in order to cancel (1 + Ls=2) with (TAs + 1) in equation (19) with A(s) =

KA(TAs+ 1). In doing so and substituting (29) into (28), one obtains

KA � 0:927

K�L
: (30)

3.2 Setting by pole placement

Case 3

Let us assume lead compensator A(s)=C(s) with

A(s) = KA(TAs+ 1) and C(s) = TCs+ 1; (TA > TC): (31)

Then, after using the Pad�e approximation, characteristic equation (19)

becomes

1 +KA

TAs+ 1

TCs+ 1

K�

s

2� Ls

2 + Ls
= 0; (32)
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or, in polynomial form,

TCLs
3+(L+2TC �KAK�TAL)s

2+(2KAK�TA�KAK�L)s+2KAK� = 0:

(33)

Parameters KA, TA and TC of DE may be determined according to the

desired speed of disturbance response by choosing all roots ��1, ��2, and
��3 of equation (33) to be real negative and equal to each other, �1 = �2 =

�3 = �, (� > 0) [13]. Then the following relations hold

�3 =
2KAK�

TCL
; (34)

3�2 =
2KAK�TA �KAK�L+ 2

TCL
; (35)

3� =
2TC + L�KAK�TAL

TCL
: (36)

Eliminating KA and TA from equations (34)-(36), one obtains�
� +

2

L

�3

=
8

TCL2
+

16

L3

or

� =
2

L
3

r
2 +

L

TC
� 2

L
: (37)

Parameter TC is calculated according to the desired dominant time con-

stant TDE of DE or with respect to the desired speed of rejection of a constant

disturbance. Thus, if we assume � = 1=TDE , parameter TC is calculated

from (37) as

TC =
8

L2

"�
1

TDE
+

2

L

�3

� 16

L3

#
�1

; (38)

where is
1

TDE
>

2

L

�
3
p
2� 1

�
=

0:5198

L
:

Other two parameters of DE are calculated by substituting � = 1=TDE
and TC from (38) into equations (34) and (35) and solving these equations

for to obtain

KA =
TCL

2T 3
DEK�

; (39)

TA =
4T 3

DE

L2
+

2T 3
DE

LTC
� 6T 2

DE

L
: (40)
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Case 4

In the cases 1-3, two di�erent tuning procedures of DE are given when

both the set-point and disturbance are constant. To enable the absorption

of ramp and slow varying disturbances the absorption principle [10], [14] is

employed. According to the principle, we assume

A(s) =KA(TAs+ 1) and

C(s) =TAs:
(41)

Notice that now DE includes the classical PI controller A(s)=C(s) =

KA(TAs + 1)=TAs, having the proportional gain Kp = KA and integrative

time constant Ti = TA, which ensure the zero steady-state error for a ramp

disturbance d(t) = d0t � 1(t). After setting (41) and the Pad�e approximation

into (19), characteristic equation (19) can be reduced into polynomial form

TALs
3+(2TA�KAK�TAL)s

2+(2KAK�TA�KAK�L)s+2KAK� = 0: (42)

Parameters KA and TA will be determined using the same procedure of

pole placement as in Case 3. Thus we have

�3 =
2K�KA

TAL
; (43)

3�2 =
2TA �KAK�TAL

TAL
and (44)

3� =
2TA �KAK�TAL

TAL
: (45)

Eliminating from (43)-(45), one obtains

� =
2

L

�
3
p
2� 1

�
=

0:51984

L
; (46)

and then, solving equations (43) and (44) for KA and TA, we get

KA =
0:44

K�L
and (47)

TA =6:27L: (48)

Recall that this DE rejects ramp disturbances; of course, it will reject

constant disturbances, too.
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Case 5

From (46) it is seen that the triple root � of characteristic equations

depends only of the e�ective transport lag L. To enable the movement of

the root along the negative part of real axis in s plane and thus to �t the

desired speed of disturbance rejection, the transform may be employed as

e�Ls = e�s(�L+�L); �+ � = 1; 0 � � < 1 and 0 < � � 1; (49)

to obtain the �rst order Pad�e approximation in the form

e�Ls =
1� �Ls

1 + �Ls
: (50)

With (41) and (50) the polynomial form of equation (19) becomes

�TALs
3+(TA��KAK�TAL)s

2+(KAK�TA��KAK�L)s+KAK� = 0: (51)

Using the same procedure of pole placement as in the cases 3 and 4, one

get

�3 =
K�KA

�TAL
; (52)

3�2 =
KAK�TA � �KAK�L

�TAL
and (53)

3� =
TA � �KAK�TAL

�TAL
: (54)

Solving equations (52)-(54) for �, KA and TA one obtains

� =
1

�L

�
3

r
1 +

�

�
� 1

�
; (55)

KA =
1� 3��L

�K�L
; � 6= 0 (56)

TA =
3

�
+ �L: (57)

Notice from equations (55)-(57) that for � = � = 1=2 these equations

become the same as related ones (46)-(48).
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Case 6

To demonstrate the ability of the controlling structure of Fig. 1 to reject

more complex disturbances, suppose the constant set-point r(t) = 1(t) and

sinusoidal disturbance d(t) = d0 sin(!0t) �1(t). Now, according to absorption
principle [13], we assume

A(s) =KAs(TAs+ 1) and

C(s) =
s2 + !20
!20

:
(58)

With (50) and (58), characteristic equation (19) of DE becomes

s2 + !20 +KA(TAs+ 1)K�

1� �Ls

1 + �Ls
= 0; (59)

or, after simple rearrangement,

�Ls3 + (1� !0KAK�TA�L)s
2+(!20�L� !0KAK��L+ !0KAK�TA)s

+!20 + !0KAK� = 0: (60)

Application of the pole placement, proposed in this paper, yields

�3 =
!20 + !0K�KA

�L
; (61)

3�2 =
!20�L� !0KAK��L+ !0KAK�TA

�L
and (62)

3� =
1� !0KAK�TA�L

�L
: (63)

The solution of (61)-(63) for �, KA, and TA is obtained as

� =
1

�L

�
3

r
1 +

�

�
(1 + !20�L

2)� 1

�
; (64)

KA =
��3L� !20
!0K�

; !20 < ��3L (65)

TA =
1� 3��L

�L(��3L� !20)
; 3��L < 1; � > 0; !20 < ��3L (66)

According to (64), by choosing the prper value of � (� + � = 1) or of

dominant time constant TDE = 1=� of the disturbance response, one can

adjust the speed sinusoidal disturbance rejection.
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4. Examlpes

We consider the process given by [11]

Gp(s) =
e�5s

s(0:9s+ 1)(0:5s + 1)(0:3s + 1)(0:1s + 1)
; (67)

with identi�ed nominal plant model

Gm(s) =
1

s
e�6:8s: (69)

In all simulation runs the reference r(t) = 1(t) and dominant time constant

of set-point response Td = 1=KrK� = 2 seconds are adopted.

Fig. 3. Absorption of a constant disturbance by the disturbance estimator
designed as a P controller.

First, the controling structure of Fig. 1 is designed to absorb the con-

stant disturbance d(t) = �0:1 � 1(t � 70). Fig. 3 shows the disturbance

response, in the simplest case, when A(s) = KA = 0:5=K�L = 0:074 and

C(s) = 1 (Case 1). Fig. 4 illustrates the absorption of the same distur-

bance d(t) = �0:1 � 1(t � 70) when DE is designed by the PD controller

A(s)=C(s) = KA(TAs + 1) with KA = 0:136 and TA = 0:5L = 3:4 (Case

2). By comparing the traces of Figs. 3 and 4, one can conclude that the
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Fig. 4. Absorption of a constant disturbance by the disturbance estimator
designed as a PD controller.

Fig. 5. Absorption of a constant disturbance by the disturbance estimator
designed as a lead compensator.

inclusion of D-action in the control law slightly improves the disturbance

absorption. A signi�cant improvement of disturbance absorbtion is achieved
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Fig. 6. Absorption of a ramp disturbance by the disturbance estimator
designed as a PI controller.

by using the lead compensator A(s)=C(s) = KA(TAs+1)=(TCs+1) (Case 3).

The �rst trace (solid line) of Fig. 5 shows the disturbance response obtained

for KA = 0:608=K�L = 0:089, TA = 0:5L = 3:4, TC = 0:2L = 1:36, and

TDE = 0:55L = 3:74. The second trace (dotted line) of Fig. 5 is obtained

for KA = 0:44=K�L = 0:065, TA = 0:545L = 3:706, TC = 0:4L = 2:72, and

TDE = 0:77L = 5:236.

The �rst trace (solid line) of Fig. 6 illustrates the ability of controlling

structure to absorb ramp disturbance (Case 4). In simulation runs, the same

ramp disturbance d(t) = d0(t�70)�1(t�70) is applied and the DE is designed

by the conventional PI controller A(s)=C(s) = KA(TAs+1)=TAs with KA =

0:44=K�L = 0:065 and TA = 6:27L = 42:636. To make clear eÆciency of

Pad�e approximation (50), the second trace (doted) in Fig. 6 is given. The

trace is obtained with the PI controller A(s)=C(s) = KA(TAs + 1)=TAs

within DE with KA = 0:521=K�L = 0:077, TA = 4:96L = 33:728, � = 0:7

and � = 0:3.

To demonstrate the ability of controlling structure in absorption of

a more complex disturbance (Case 6), the sinusoidal disturbance d(t) =

d0 sin[!0(t � 37)] � 1(t � 37) with !0 = 0:05 rad/s is applied and DE

is designed by A(s) = KAs(TAs + 1) and C(s) = (s2 + !20)=!
2
0 with

KA = 0:332=K�L = 0:049, TA = 4:585L = 31:178, � = 0:95 and � = 0:05.
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Fig. 7. Absorption of a sinusoidal disturbance by the disturbance estimator
designed by using the absorbtion principle.

Fig. 8. Absorption of a combined ramp disturbance by the disturbance estimator
designed as a PI controller.

Fig. 7 shows that disturbance is absorbed during only one period of oscilla-

tions.
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Finaly, the more complex ramp disturbance d(t) combined by several

linear segments, shown in Fig. 8, is applied in the controlling structure

designed to absorb ramp disturbances by A(s)=C(s) = KA(TAs + 1)=TAs

and KA = 0:627=K�L = 0:092, TA = 3:742L = 25:4456, � = 0:85 and

� = 0:15 (Case 5). From Fig. 8 it is seen that each linear segment of

disturbance is absorbed within a relatively small time period.

5. Concluding Remarks

We have proposed a modi�ed structure of the Smith predictor for control

plants with the integrating mode, velocity constant, process time constant,

and long transport lag. The stucture comprises the classical Smith controller

and disturbance estimator. The method based upon the use of M circle

and pole placement procedure are applied for parameter setting according

to the desired set-point response and speed of disturbance rejection. All

tuning parameters, the single parameter of main controller and parameters of

disturbance estimator, have clear physical meanings. The observer estimator

is designed in di�erent ways to absorb the constant, ramp, slow varyng and

sinusoidal disturbances. Several experimental results are present to illustrate

the design procedure and to demonstrate the eÆciency of the controlling

structure in disurbance rejection.
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