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Uniform Logical Cryptanalysis of CubeHash Function

Miodrag Mili ć and Vojin Šenk

Abstract: In this paper we present results of uniform logical cryptanalysis method
applied to cryptographic hash function CubeHash. During the last decade, some of the
most popular cryptographic hash functions were broken. Therefore, in 2007, National
Institute of Standards and Technology (NIST), announced aninternational competi-
tion for a new Hash Standard called SHA-3. Only 14 candidatespassed first two
selection rounds and CubeHash is one of them. A great effort is made in their analysis
and comparison. Uniform logical cryptanalysis presents aninteresting method for
this purpose. Universal, adjustable to almost any cryptographic hash function, very
fast and reliable, it presents a promising method in the world of cryptanalysis.

Keywords: Cryptography, hash functions, uniform logical cryptanalysis, proposi-
tional satisfiability, CubeHash.

1 Introduction

Hash functions have a very important role in modern cryptography, primarily in
digital signatures and various forms of authentication. Therefore, a great effort is
made in order to enhance their design and analysis methods. The most popular
hash functions today are MD5 and SHA-1.

There are many principles used for hash function design. Some of them rely on
strong mathematical background, i.e. they have a theoretical foundation that sup-
ports claims of their security. Some hash functions rely on well-known and heavily-
tested block cipher functions. However, most of them are specially designed using
small set of fast operations carefully mixed and iterated over input sequence many
times. Nevertheless, all designers have the same goal: to create a function resistant
to various attacks, i.e. to make any attack method a computationally hard problem.
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NP-complete class is probably the most studied class of computationally hard
problems and the most famous problem from this class is Boolean or propositional
satisfiability problem (shorthand SAT). This was the first problem proved to be NP-
complete [1]. Its significance was further enhanced in the last decade with devel-
opment of many efficient algorithms for solving certain instances of this problem.
Programs developed using these algorithms are known as “SAT-solvers“.

Different design methods issue different analysis methods, hence there are
many methods of how to analyze cryptographic hash functions. In [2], Massacci
and Marraro introduced a new approach to cryptanalysis. Using special handcrafted
program, they encoded DES algorithm [3] as SAT problem and used SAT-solver
programs to analyze the algorithm. They called itlogical cryptanalysis. Jovanovíc
and Janǐcić [4] improved this approach combining useful features of C++ program-
ming language. They designed a framework applicable to any hash algorithm,
providing fast and reliable way of hash function analysis. They called ituniform
logical cryptanalysis.

In 2004, one of the most popular hash functions MD5 [5], as well as several
other popular hash functions were broken [6]. Then, in 2005,another very popular
function SHA-1 [7] was almost broken [8]. Therefore, in 2007, NIST organized
an international competition for a new hash algorithm standard called SHA-3 [9].
There were over 50 candidates, but only 14 remained after tworounds, and one of
them is CubeHash algorithm [10]. Analysis, testing and comparing of these algo-
rithms presents one of the most exciting topics among cryptography researchers at
the moment. The winner will be announced in 2012.

This paper presents results of uniform logical cryptanalysis method applied
on CubeHash algorithm. This method is used to analyze and compare several
popular cryptographic hash functions with CubeHash as wellas different variants
of CubeHash.

2 Cryptographic Hash Functions

A hash function (shortlyhash) is a functionh that maps an inputx of arbitrary finite
bitlength to an outputh(x) of fixed bitlengthn. Moreover, it is expected that this
transformation is computationally feasible, i.e. easy to compute.

A cryptographic hash function has to satisfy three more requirements:

1. Preimage resistance— for given outputy it is computationally infeasible to
find any preimagex such thath(x) = y.

2. Second preimage resistance— for given inputx it is computationally infea-
sible to find any other inputx′ such thatx 6= x′ andh(x) = h(x′).
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3. Collision resistance— it is computationally infeasible to find any pair of
inputsx1 andx2 such thath(x1) = h(x2).

To meet these requirements, hash function designers use various construction
principles. Probably the most popular one is Merkle-Damgård hash construction
[11, 12]. Algorithms based on this construction principle perform several steps
during input sequence transformation. First, an input sequence is extended to meet
certain bitlength requirements and its original bitlengthis encoded and appended
to the end of extended sequence to prevent trivial attacks. Then, extended sequence
is broken up into series of smaller equal-sized blocks. After that, every block is
processed using compression function1 which takes output of a previous processing
as its initial state. Finally, after the last input block is processed, the finalization
function is performed. Compression functions are mostly specially designed for
this purpose like in MD5 or SHA-1 and SHA-2 algorithms [7], but there are also
algorithms which use well-known cryptographic block ciphers. Recently, some
other construction principles like Merkle tree [13] and sponge construction [14]
came into focus.

3 CubeHash Algorithm

CubeHash is a cryptographic hash function created by DanielJ. Bernstein. It is one
of 14 candidates submitted to the NIST hash function competition which passed
two selection rounds. This algorithm establishes a new construction principle dif-
ferent from mostly used Merkle-Damgård principle. Three parameters determine
its performance:

• r — number of roundstransformfunction processes each input block

• b — number of bytes per input block

• h — number of output (hash) bits

CubeHash algorithm maintains a 1024-bit state organized asa 32 4-byte integers
(s[0],s[1], . . . s[31]) interpreted in a little-endian form. The core of this algorithm
presents functiontransform. Its pseudo-code is shown in Algorithm 1. There
are 32 32-bit additions and 32 32-bit exclusive-or operations (xors) per round,
which makes 32r/b 32-bit additions and 32r/b 32-bit xors per each byte of input
sequence. Obviously, security of this algorithm is increased by increasingr and
decreasingb at the cost of its speed. At the same time, memory consumptionis
not affected. Recommended values for parameters of CubeHash algorithm, which

1Finite state machine with state-transition function dependent on the input sequence. Its next state
is its output. It is basic building block of iterative hash functions.
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represent trade off between security requirements and speed, arer = 16 andb= 32.

Algorithm 1: Functiontransform
input : CubeHash state as array of integerss[32]
output: changed state

note 1: rotl(a,b)⇔ left rotation of variablea for b bit positions
note 2: r in the outer loop is CubeHash configuration parameter

integert[16]; //Local array declaration

for i← 0 to r do
for j ← 0 to 16do s[ j +16] = s[ j +16]+s[ j] ;
for j ← 0 to 16do t[ j⊕8] = s[ j] ;
for j ← 0 to 16do s[ j] = rotl(t[ j],7) ;
for j ← 0 to 16do s[ j] = s[ j]⊕s[ j +16] ;
for j ← 0 to 16do t[ j⊕2] = s[ j +16] ;
for j ← 0 to 16do s[ j +16] = t[ j] ;
for j ← 0 to 16do s[ j +16] = s[ j +16]+s[ j] ;
for j ← 0 to 16do t[ j⊕4] = s[ j] ;
for j ← 0 to 16do s[ j] = rotl(t[ j],11) ;
for j ← 0 to 16do s[ j] = s[ j]⊕s[ j +16] ;
for j ← 0 to 16do t[ j⊕1] = s[ j +16] ;
for j ← 0 to 16do s[ j +16] = t[ j] ;

end

4 Uniform Logical Cryptanalysis

Massacci and Marraro in [2] presentedlogical cryptanalysismethod. They encoded
some properties of DES algorithm [3] as satisfiability (SAT)problems and used
SAT-solver programs to examine those properties. Their method was specially de-
signed for DES algorithm. Later, in [4], Jovanović and Janǐcić introduced improved
method of logical cryptanalysis independent of any particular algorithm and they
called ituniform logical cryptanalysis.

In order to transform any algorithm related problem or property into SAT prob-
lem, one first has to transform the algorithm into propositional formulae and then
encode the problem or property as a SAT problem. Satisfiability represents a
problem of deciding if there is a truth assignment for the variables of a given
propositional formula under which the formula evaluates totrue. The opposite
problem, i.e. deciding if there is no truth assignment underwhich the formula
evaluates to truth is called unsatisfiability problem. In both cases, propositional
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formulae consist only of Boolean variables and logical operations AND, OR and
NOT. Moreover, it is common to represent formulae in conjunctive normal form
i.e. conjunction of clauses, where clause is a disjunction of literals and literal is a
variable or its negation.

4.1 Uniform encoding of Hash functions

The basic rule of modern cryptography is publicity of all itsalgorithms and pro-
tocols, i.e. their strength does not rely on their secrecy. Therefore, every good
hash algorithm is publicly available. Moreover, almost allof them are encoded
in C programming language because of its performances. The C++ programming
language, the successor of C, has some additional properties that make it easy to
transform the original program that calculates hash value into program that gen-
erates appropriate propositional formulae. To make this transformation possible,
one can create a polymorphic [15] user defined type (class) that will represent
propositional formulae (Formula) and another class that will represent an array
of formulae (ModifiedUInt). Figure 1 shows diagram of these classes and their
relations. SinceModifiedUInt class represents array of formulae, every operator

Fig. 1. Relation betweenModifiedUIntandFormulaclasses.

has to be adapted, i.e. overloaded [15], to be able to generate formulae. To make
use of created classes, data types of some variables from theoriginal program have
to be replaced withModifiedUInt. After that, simple compiling and running of the
program, instead of hash value (array of bits), generates anarray of propositional
formulae.
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4.2 Cryptanalysis to SAT problem transformations

Analysis and comparison of cryptographic hash algorithms is a challenging task.
One way to accomplish this task, presented in [2] and [4], is to express a problem
using propositional formulae in a conjunctive normal form (CNF) suitable as input
for SAT-solver programs. It is shown that the process of generating propositional
formulae is feasible, but the process of their transformation into CNF is of exponen-
tial complexity. Therefore, a compromise is made using Tseitin’s method [16] that
transforms a problem given in propositional formulae into SAT-equivalent problem
with linear complexity. The result of this transformation is still too complex for
modern SAT-solver programs, i.e. we cannot break good hash functions using
them. For that reason, attention is focused to number of clauses and literals in
CNF of SAT-equivalent problems. It is believed that these numbers can be used as
indicators of complexity of observed problems which imply strength of examined
hash functions.

In Section 2, hash functions are described as functions thatmap an input se-
quence of arbitrary finite bitlength to an output sequence offixed bitlength. Let
input and output sequences be presented as a finite length vectors of Boolean values
~X = (x1,x2, . . .xM−1,xM) and~Y = (y1,y2, . . .yN−1,yN) respectively. Every good
cryptographic hash function ensures that every value of theoutput sequence~Y is a
function of all values of the input, i.e.∀n∈ [1,N], yn = fn(x1, . . .xM).

After replacing appropriate data types in original algorithm with ModifiedUInt
class, input and output sequences become vectors of instances of data typeFormula,
i.e. ~X′= (x′1,x

′
2, . . .x

′
M−1,x

′
M) and~Y′ = (y′1,y

′
2, . . .y

′
N−1,y

′
N) respectively. Moreover,

relation between output and input values becomes∀n∈ [1,N], y′n = Fn(x′1, . . .x
′
M)

where everyFn represents a propositional formula. Now, we have a hash value
expressed as a series of propositional formulae.

Next, three main hash cryptanalysis problems will be described in a way suit-
able for transformation into SAT-equivalent problems.

Preimage resistanceof a cryptographic hash function is defined in Section 2.
For a given output (hash) value~C = (c1, . . .cN), where for∀n∈ [1,N] cn is a con-
stant value (true or false), the problem of preimage resistanceΠ1 can be represented
as

Π1(x
′
1, . . .x

′
M) ⇐⇒

N
∧

n=1

(

y′n = cn
)

,

wherey′n = Fn(x′1, . . .x
′
M) represents propositional formulae of hash value.

Second preimage resistanceof a cryptographic hash function is defined in
Section 2. For a given first image (input) value~B = (b1 . . .bM), where∀m ∈
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[1,M], bm is a constant value (true or false), andFn(b1, . . .bM) represents propo-
sitional formulae of hash value of~B, the problem of second preimage resistanceΠ2

can be represented as

Π2(x
′
1, . . .x

′
M) ⇐⇒

(

N
∧

n=1

(

Fn(x
′
1, . . .x

′
M) = Fn(b1, . . .bM)

)

∧

(

¬

N
∧

n=1

(

x′n = bn
)

)

)

.

Collision resistanceof a cryptographic hash function is defined in Section 2.
Two input values are given~X′ = (x′1 . . .x′M) and ~X′′ = (x′′1 . . .x′′M). Propositional
formulae of their hash values are represented asFn(x′1, . . .x

′
M) and Fn(x′′1, . . .x

′′
M)

respectively. Problem of collision resistanceΠ3 can be represented as

Π3(x
′
1, . . .x

′
M,x′′1, . . .x

′′
M) ⇐⇒

(

N
∧

n=1

(

Fn(x
′
1, . . .x

′
M) = Fn(x

′′
1, . . .x

′′
M)

)

∧

(

¬

N
∧

n=1

(

x′n = x′′n
)

)

)

.

5 Experimental Results

Following the principles of uniform logical cryptanalysisdescribed in Subsec-
tion 4.1, we implemented a library in the C++ programming language consisting of
classes likeModifiedUIntandFormulawith their member functions and overloaded
operators, as well as other classes and functions. Next, we choose the following
algorithms to test and compare: MD5, SHA-1, SHA-2 and CubeHash(r,b) with
configuration parameters(1,32),(2,32),(4,32),(8,32) and (16,3). Then, their
source code was slightly modified to use our classes instead of built-in types. Fi-
nally, problems ofpreimage, second preimageandcollision resistance, following
the theory from Subsection 4.2 were encoded as a C++ program.

Figure 2 shows comparison of functions CubeHash(1,32), CubeHash(2,32),
MD5, SHA-1 and SHA-2. As expected, there are much more variables as well
as clauses for SHA-2 than for SHA-1 or MD5 function, which indicates much
bigger complexity of preimage resistance problem and therefore better security
margin for SHA-2 than for the other two popular functions. This figure also shows
that CubeHash(1,32) has complexity close to SHA-1, whereas CubeHash(2,32) is
slightly better than SHA-2.

In Figure 3, we can see comparison between several CubeHash variants. Obvi-
ously, CubeHash(16,32) is superior to other variants.
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Fig. 2. Results of preimage and collision resistance problems transformed into SAT-equivalent
problems for MD5, SHA-1, SHA-2, CubeHash(1,32) and CubeHash(2,32). (a) and (b) show results
for preimage problem while (c) and (d) show results for collision problem, all against number of
variables, i.e length of an input sequence given in bits.

Results for number of variables and clauses for second preimage resistance
problem are very close to preimage ones, therefore they are excepted from Figures
2 and 3.

6 Conclusion

In this paper we presented results of uniform logical cryptanalysis applied on cryp-
tographic hash function CubeHash. Compared to other logical cryptanalysis meth-
ods, this one provides easy, fast and reliable way of transforming cryptanalysis
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Fig. 3. Results of preimage and collision resistance problems transformed into SAT-equivalent
problems for various CubeHash variants. (a) and (b) show results for preimage problem while (c)
and (d) show results for collision problem, all against number of variables, i.e length of an input
sequence given in bits.

problems into SAT-equivalent ones. Given analysis resultsshow that CubeHash
function configuration parameters provide a great flexibility in performance tuning.
They also show that officially proposed configuration parameters for CubeHash
r = 16 andb = 32 provide a much bigger number of variables and clauses in SAT-
equivalent representation than for SHA-2 and other currently popular hash func-
tions, which indicates a much bigger security margin, i.e cryptographic strength of
this algorithm.
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