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Uniform Logical Cryptanalysis of CubeHash Function

Miodrag Mili ¢ and Vojin Senk

Abstract: In this paper we present results of uniform logical cryptgsia method
applied to cryptographic hash function CubeHash. Durieddbt decade, some of the
most popular cryptographic hash functions were brokenrdfbee, in 2007, National
Institute of Standards and Technology (NIST), announceih&nnational competi-
tion for a new Hash Standard called SHA-3. Only 14 candidptessed first two
selection rounds and CubeHash is one of them. A great effartide in their analysis
and comparison. Uniform logical cryptanalysis presentsnéresting method for
this purpose. Universal, adjustable to almost any crygipigic hash function, very
fast and reliable, it presents a promising method in thedwofkryptanalysis.

Keywords: Cryptography, hash functions, uniform logical cryptaisédy proposi-
tional satisfiability, CubeHash.

1 Introduction

Hash functions have a very important role in modern cry@phly, primarily in
digital signatures and various forms of authenticationer€fore, a great effort is
made in order to enhance their design and analysis methoks.mbst popular
hash functions today are MD5 and SHA-1.

There are many principles used for hash function design.eStirthem rely on
strong mathematical background, i.e. they have a theatdtiandation that sup-
ports claims of their security. Some hash functions rely elt-khown and heavily-
tested block cipher functions. However, most of them areiafig designed using
small set of fast operations carefully mixed and iterateelr avput sequence many
times. Nevertheless, all designers have the same goaledteca function resistant
to various attacks, i.e. to make any attack method a compnégdity hard problem.
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NP-complete class is probably the most studied class of atatipnally hard
problems and the most famous problem from this class is Boabe propositional
satisfiability problem (shorthand SAT). This was the firsttgem proved to be NP-
complete [1]. Its significance was further enhanced in tsedacade with devel-
opment of many efficient algorithms for solving certain amstes of this problem.
Programs developed using these algorithms are known as-$8Ke&rs".

Different design methods issue different analysis methoesce there are
many methods of how to analyze cryptographic hash functiom$2], Massacci
and Marraro introduced a new approach to cryptanalysisadJgpecial handcrafted
program, they encoded DES algorithm [3] as SAT problem amdl (&AT-solver
programs to analyze the algorithm. They callelbgiical cryptanalysis Jovanove
and Jarti¢ [4] improved this approach combining useful features of @togram-
ming language. They designed a framework applicable to ash falgorithm,
providing fast and reliable way of hash function analysisiey called ituniform
logical cryptanalysis

In 2004, one of the most popular hash functions MD5 [5], ad a®lseveral
other popular hash functions were broken [6]. Then, in 2@@6ther very popular
function SHA-1 [7] was almost broken [8]. Therefore, in 200WST organized
an international competition for a new hash algorithm séaddalled SHA-3 [9].
There were over 50 candidates, but only 14 remained afterdwads, and one of
them is CubeHash algorithm [10]. Analysis, testing and canmg of these algo-
rithms presents one of the most exciting topics among cgypfahy researchers at
the moment. The winner will be announced in 2012.

This paper presents results of uniform logical cryptanalysethod applied
on CubeHash algorithm. This method is used to analyze angpa@rseveral
popular cryptographic hash functions with CubeHash as agedifferent variants
of CubeHash.

2 Cryptographic Hash Functions

A hash function (shorthhash is a functionh that maps an inpw of arbitrary finite
bitlength to an outpuh(x) of fixed bitlengthn. Moreover, it is expected that this
transformation is computationally feasible, i.e. easydmpute.

A cryptographic hash function has to satisfy three moreiremqents:

1. Preimage resistance- for given outputy it is computationally infeasible to
find any preimage such thah(x) =y.

2. Second preimage resistanee for given inputx it is computationally infea-
sible to find any other input such thaix # x' andh(x) = h(xX).
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3. Collision resistance— it is computationally infeasible to find any pair of
inputsx; andxz such thah(x;) = h(x2).

To meet these requirements, hash function designers useiyaonstruction
principles. Probably the most popular one is Merkle-Damd#ash construction
[11, 12]. Algorithms based on this construction principkrfprm several steps
during input sequence transformation. First, an input eege is extended to meet
certain bitlength requirements and its original bitlengttencoded and appended
to the end of extended sequence to prevent trivial attadksn,Textended sequence
is broken up into series of smaller equal-sized blocks. ritat, every block is
processed using compression functiarhich takes output of a previous processing
as its initial state. Finally, after the last input block i®pessed, the finalization
function is performed. Compression functions are mosticilly designed for
this purpose like in MD5 or SHA-1 and SHA-2 algorithms [7]tlbhere are also
algorithms which use well-known cryptographic block cighe Recently, some
other construction principles like Merkle tree [13] and sge construction [14]
came into focus.

3 CubeHash Algorithm

CubeHash is a cryptographic hash function created by Daniggrnstein. It is one
of 14 candidates submitted to the NIST hash function coripetivhich passed
two selection rounds. This algorithm establishes a newtoact®n principle dif-
ferent from mostly used Merkle-Damgard principle. Threeapzeters determine
its performance:

e I — number of round$ransformfunction processes each input block
e b — number of bytes per input block
e h — number of output (hash) bits

CubeHash algorithm maintains a 1024-bit state organizea 3% 4-byte integers
(s[0],s[1],...9[31]) interpreted in a little-endian form. The core of this al¢fom
presents functiortransform Its pseudo-code is shown in Algorithm 1. There
are 32 32-bit additions and 32 32-bit exclusive-or operatixors) per round,
which makes 32/b 32-bit additions and 32b 32-bit xors per each byte of input
sequence. Obviously, security of this algorithm is inceglaby increasing and
decreasing at the cost of its speed. At the same time, memory consumifgion
not affected. Recommended values for parameters of Cubeddgsrithm, which

IFinite state machine with state-transition function defser on the input sequence. Its next state
is its output. It is basic building block of iterative hasmétions.
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represent trade off between security requirements andispes = 16 andb = 32.

Algorithm 1: Functiontransform

input : CubeHash state as array of integslB2)
output: changed state

note 1 rotl(a,b) < left rotation of variable for b bit positions
note 2 r in the outer loop is CubeHash configuration parameter

integert[16]; //Local array declaration

fori«<Otordo

for j —Oto16do g[j+16] =s[j+ 16|+ 9j] ;
for j < Oto16do t[j £ 8] =94j] ;

for j «— Oto 16do gj] =rotl(t[j],7);

for j «— 0to 16do s[j] =9[j] @[] + 16]

for j«—0Oto16do t[j®2] =9[j+16];

for j «—0to16do s[j+ 16 =t[j];

for j —Oto16do gj+16] =s[j + 16|+ 9j] ;
for j < Oto16do t[j ¢4 =94j] ;

for j «— 0to 16do g[j] =rotl(t[j],11);

for j < O0to 16do §[j] =9[j]®sj + 16 ;

for j«—Oto16do t[j® 1] =9[j+16;

for j —0Oto16do s[j+ 16 =t[j];

end

4 Uniform Logical Cryptanalysis

Massacci and Marraro in [2] presentedical cryptanalysisnethod. They encoded
some properties of DES algorithm [3] as satisfiability (SAfdblems and used
SAT-solver programs to examine those properties. Theihatktvas specially de-
signed for DES algorithm. Later, in [4], Jovanownd Jardic introduced improved
method of logical cryptanalysis independent of any paldicalgorithm and they
called ituniform logical cryptanalysis

In order to transform any algorithm related problem or propmto SAT prob-
lem, one first has to transform the algorithm into proposdidformulae and then
encode the problem or property as a SAT problem. Satisfiabitipresents a
problem of deciding if there is a truth assignment for theialdes of a given
propositional formula under which the formula evaluatedrte. The opposite
problem, i.e. deciding if there is no truth assignment unalbich the formula
evaluates to truth is called unsatisfiability problem. Irthboases, propositional
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formulae consist only of Boolean variables and logical apens AND, OR and
NOT. Moreover, it is common to represent formulae in confiwecnormal form
i.e. conjunction of clauses, where clause is a disjunctiditevals and literal is a
variable or its negation.

4.1 Uniform encoding of Hash functions

The basic rule of modern cryptography is publicity of all égorithms and pro-
tocols, i.e. their strength does not rely on their secreciher&fore, every good
hash algorithm is publicly available. Moreover, almostdlithem are encoded
in C programming language because of its performances. Frep@gramming
language, the successor of C, has some additional prapénaé make it easy to
transform the original program that calculates hash vatte program that gen-
erates appropriate propositional formulae. To make tlissfiormation possible,
one can create a polymorphic [15] user defined type (clasg)wfil represent
propositional formulaeHormuld and another class that will represent an array
of formulae ModifiedUIn). Figure 1 shows diagram of these classes and their
relations. SinceModifiedUInt class represents array of formulae, every operator

ModifiedUInt

1 2 3 A 32

\ | [ ]

—»  Formula 4——/

FormulaC FormulaV A
FormulaBinary FormulaUnary
const_value variable_name 4 i
FormulaXor FormulaOr FormulaNot
operandl, operand2 operandl, operand2 operand

Fig. 1. Relation betweeklodifiedUIntandFormulaclasses.

has to be adapted, i.e. overloaded [15], to be able to genfmahulae. To make
use of created classes, data types of some variables froonigfireal program have
to be replaced wittModifiedUInt After that, simple compiling and running of the

program, instead of hash value (array of bits), generatesray of propositional
formulae.
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4.2 Cryptanalysis to SAT problem transformations

Analysis and comparison of cryptographic hash algoritheng challenging task.
One way to accomplish this task, presented in [2] and [4]p iexpress a problem
using propositional formulae in a conjunctive normal folGNF) suitable as input
for SAT-solver programs. It is shown that the process of gatiitey propositional
formulae is feasible, but the process of their transforomaitnto CNF is of exponen-
tial complexity. Therefore, a compromise is made usingftirsgimethod [16] that
transforms a problem given in propositional formulae inI-&quivalent problem
with linear complexity. The result of this transformatianstill too complex for
modern SAT-solver programs, i.e. we cannot break good hasttibns using
them. For that reason, attention is focused to number ofseland literals in
CNF of SAT-equivalent problems. It is believed that thesebers can be used as
indicators of complexity of observed problems which impiyeagth of examined
hash functions.

In Section 2, hash functions are described as functionsntiagt an input se-
guence of arbitrary finite bitlength to an output sequencéxefl bitlength. Let
input and output sequences be presented as a finite lendtrsse€Boolean values
X = (X1,X2,...Xm—1,Xv) and¥Y = (y1,¥o,...Yn_1,Yn) Fespectively. Every good
cryptographic hash function ensures that every value obtijeut sequenc¥ is a
function of all values of the input, i.&n € [1,N], Yn = fn(Xq,...Xm)-

After replacing appropriate data types in original aldoritwith ModifiedUInt
class, input and output sequences become vectors of iestahdata typ&ormula,
i.e. X/ = (X, %, ... X1, %) andY’ = (Y4, Y5, ... Ya_1,Ya) T€SPectively. Moreover,
relation between output and input values becoires [1,N], y,, = Fa(X},...Xy)
where everyF, represents a propositional formula. Now, we have a hastevalu
expressed as a series of propositional formulae.

Next, three main hash cryptanalysis problems will be dbsdrin a way suit-
able for transformation into SAT-equivalent problems.

Preimage resistanceof a cryptographic hash function is defined in Section 2.
For a given output (hash) val@&= (cy,...cy), where forvn € [1,N] ¢, is a con-
stant value (true or false), the problem of preimage resigtid, can be represented
as

N
I'Il(x’l,...x’M) <~ /\ ()/n:Cn),

n=1
wherey,, = Fn(X},...Xy) represents propositional formulae of hash value.

Second preimage resistancef a cryptographic hash function is defined in
Section 2. For a given first image (input) val@ie= (b;...by), whereVm ¢
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[1,M], bm is a constant value (true or false), aRgbs,...by) represents propo-
sitional formulae of hash value & the problem of second preimage resistafige
can be represented as

N

MoKy, Ky (n/_\l<Fn(x’1,...>(M):Fn(bl,...bM)> /\<—|Z\1()<]:bn)>>.

Collision resistanceof a cryptographic hash function is defined in Section 2.
Two input values are giveX’ = (x;...x,) andX” = (X/...x!,). Propositional
formulae of their hash values are representedr#s),...xy) and Fy(X{,...xy;)
respectively. Problem of collision resistaridg can be represented as

M3(Xg, .. X, X - X)) =

(/N\ (Fn()(l,...)(M) — Fa 1’,...%@)) A <ﬁ/N\ (xn:)(;;))),

n=1 n=1

5 Experimental Results

Following the principles of uniform logical cryptanalystescribed in Subsec-
tion 4.1, we implemented a library in the C++ programminglzage consisting of
classes likeModifiedUIntandFormulawith their member functions and overloaded
operators, as well as other classes and functions. Nextheese the following
algorithms to test and compare: MD5, SHA-1, SHA-2 and Culsbbizb) with
configuration parametergl, 32),(2,32),(4,32),(8,32) and (16,3). Then, their
source code was slightly modified to use our classes instehdiléin types. Fi-
nally, problems opreimage second preimagendcollision resistance following
the theory from Subsection 4.2 were encoded as a C++ program.

Figure 2 shows comparison of functions CubeHa&sB2), CubeHasf, 32),
MD5, SHA-1 and SHA-2. As expected, there are much more viasabhs well
as clauses for SHA-2 than for SHA-1 or MD5 function, whichigades much
bigger complexity of preimage resistance problem and foerebetter security
margin for SHA-2 than for the other two popular functionsisltigure also shows
that CubeHasfi,32) has complexity close to SHA-1, whereas CubeH2as3?) is
slightly better than SHA-2.

In Figure 3, we can see comparison between several Cubeldaahtg. Obvi-
ously, CubeHagl16,32) is superior to other variants.
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Fig. 2. Results of preimage and collision resistance probléransformed into SAT-equivalent
problems for MD5, SHA-1, SHA-2, CubeHadh32) and CubeHagq2,32). (a) and (b) show results
for preimage problem while (c) and (d) show results for swdin problem, all against number of
variables, i.e length of an input sequence given in bits.

Results for number of variables and clauses for second pggnmesistance
problem are very close to preimage ones, therefore theyxaspted from Figures
2 and 3.

6 Conclusion

In this paper we presented results of uniform logical cnyplgsis applied on cryp-
tographic hash function CubeHash. Compared to other Ibgigptanalysis meth-
ods, this one provides easy, fast and reliable way of tramsfig cryptanalysis



Uniform Logical Cryptanalysis of CubeHash Function 365

CubeHash(16,32) -~ CubeHash(16,32) —-—-
CubeHash(8,32) - CubeHash(8,32) -~
o e
ubeHash(2,32) - ubeHash(2,32) -
4 CubeHash(1,32) @ CubeHash(1,32)
5 13e+6 - Y 45e+6 |-
9 L g L e
= T
[ ©
5 9.8e+5 - T G 3.4e+6 T
3 8
€ 65e+5 [ - E 23e+6 | .
2 z '
33e+5 B 11e+6 .. R
0.0e+0 >_77777I 1 1 1 1 0.0e+0 — 1 1 1 1 1
50 100 150 200 250 50 100 150 200 250
Input sequence length [b] Input sequence length [b]
@ (b)
CubeHash(16,32) ---- CubeHash(16,32) ----
CubeHash(8,32) -~ CubeHash(8,32) -
Gt T
ubeHash(2,32) ------- ubeHash(2,32) -------
4] CubeHash(1,32) —— @ CubeHash(1,32) ——
o 25e+6 | _ _ . _____ B Q 85e+6 .o E
% 3
> (8]
5 19e+6 - 1 S 6.4e+6 [ 1
g 2
E 126 . . E 43e+6 . .
2 z
6.2645 | - 2.0€+6 | -
0.06+0 —— ' L L L 0.0e+0 E——1 . . . .
50 100 150 200 250 50 100 150 200 250
Input sequence length [b] Input sequence length [b]
() (d)

Fig. 3. Results of preimage and collision resistance probléransformed into SAT-equivalent
problems for various CubeHash variants. (a) and (b) shoultsefor preimage problem while (c)
and (d) show results for collision problem, all against nembf variables, i.e length of an input
sequence given in bits.

problems into SAT-equivalent ones. Given analysis reslitav that CubeHash
function configuration parameters provide a great flexibiti performance tuning.
They also show that officially proposed configuration paransefor CubeHash

r = 16 andb = 32 provide a much bigger number of variables and clausesTa SA
equivalent representation than for SHA-2 and other cugreadpular hash func-
tions, which indicates a much bigger security margin, iygtgraphic strength of
this algorithm.
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