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The Unified Chaotic System Describing the Lorenz and
Chua Systems

Zeraoulia Elhadj and Julien Clinton Sprott

Abstract: This paper introduces the dynamical behaviors of a unified nonlinear chaotic
system which describes a two-family chaotic system containing the original Lorenz
and the original Chua systems as two extremes and some other systems as a transition
in between via a new constructed joint function. This systemcan display two kinds of
attractors, those with one scroll and those with two scrolls.

Keywords: Unified system, double-scroll attractor, quasi-attractor, Lorenz-type at-
tractor.

1 Introduction

THE discovery of chaos in three-dimensional smooth autonomoussystems is due
to Lorenz [1] where he analyzes the following system:

x′ = σ (y− x)

y′ = rx− y− xz

z′ = −bz+ xy

(1)

and obtains a typical chaotic attractor for:

σ = 10, r = 28, b =
8
3
. (2)

Many other systems of three smooth autonomous ordinary differential equa-
tions with two quadratic nonlinear terms have been found. These include the Chen’s
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system [2] and the unified chaotic system which describes a large family of chaotic
systems containing the Lorenz and Chen systems as two extremes and the Lü sys-
tem as a transition in between [3]. These systems have many similar properties,
e.g. they are all dissipative systems and have at most three equilibria and two-scroll
chaotic attractors, and they possess Hopf and period-doubling bifurcations.

A new continuous-time, three-dimensional autonomous system is presented
in [4]. This new system is capable of realizing the well-known quasi-attractors
and Lorenz-type strange attractors in three-dimensional autonomous system as spe-
cial choices of some real function and eight bifurcation parameters; especially the
Lorenz [1], the Chen [2], the Lü [5], and the Chua [6] models are obtained; in ad-
dition to other new chaotic attractors. This model is given by the following system
of equations:

x′ = a1(y−h(x))

y′ = a2x+ by+ a3z−a4xz

z′ = −a5z+ a6xy−a7y

(3)

where(ai)1≤i≤7 andb are the bifurcation parameters andh(x) is some real function.
For example:

(1) Forh(x) = x,a3 = a7 = 0,b = −1, one has the Lorenz model [1].

(2) Forh(x) = x,a3 = a7 = 0,a2 = b−a1, one has the Chen model [3].

(3) Forh(x) = x,a2 = a3 = a7 = 0, anda4 = 1, one has the Lü model [4].

(4) Forh(x) = m1x+ 1
2(m0−m1)(|x+1|− |x−1|) , anda2 = a3 = 1,a4 = a5 =

a6 = 0,b = −1, one has the Chua model.

Observations of chaotic behavior in electrical circuits date back to Van der Pol
in 1927 who reportedirregular noise from his neon bulb circuit. The first proposed
real physical dynamical system capable of generating chaotic phenomena in the
laboratory similar to those in the Lorenz system was invented by Chua [7] who
synthesized a simple third-order autonomous circuit givenby:

x′ = α (y−h(x))

y′ = x− y+ z

z′ = −βy

(4)

where

h(x) = m1x+
1
2
(m0−m1)(|x+1|− |x−1|) (5)

is the characteristic function. This system exhibits a remarkable variety of dynam-
ics and gives a chaotic attractor called thedouble-scroll attractor [6] obtained for:

α = 9.35, β = 14.79, m0 = −
1
7
, m1 =

2
7
. (6)
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There are several studies comparing Chua’s system and the Lorenz equation [8],
pointing out that Chua’s system has several advantages overthe Lorenz equation:
Chua’s system has only one nonlinearity with one variable, whereas the Lorenz
system has two nonlinearities, each with two variables. Furthermore, Chua’s circuit
is easy to build in the laboratory in contrast to the Lorenz system.

Strange attractors can be classified into three principal classes: hyperbolic,
Lorenz-type, and quasi-attractors. The hyperbolic attractors are the limit sets for
which Smale’s “axiom A” is satisfied and are structurally stable. Periodic orbits and
homoclinic orbits are dense and are of the same saddle type, which is to say that
they have the same index (the same dimension for their stableand unstable man-
ifolds). However, the Lorenz-type attractors are not structurally stable, although
their homoclinic and heteroclinic orbits are structurallystable (hyperbolic), and no
stable periodic orbits appear under small parameter variations. The quasi-attractors
are the limit sets enclosing periodic orbits of different topological types (for exam-
ple stable and saddle periodic orbits) and structurally unstable orbits. For example,
the attractors generated by Chua’s circuit [6] (see Fig. 3(d)) associated with saddle-
focus homoclinic loops are quasi-attractors. Note that this type is more complex
than the above two attractors.

The principal motivation of this work is to develop and analyze a new unified
chaotic system which describes the original Lorenz and Chuasystems as two ex-
tremes with some other systems as a transition in between andto present the first
mathematical model that describes with one key parameter both the Lorenz system
as a Lorenz-type attractor and the Chua system as a quasi-attractor.

The paper is organized as follows: In the next section, the new three-dimensional
system is presented. Some basic properties are given in Section 3. The stability of
its equilibrium points are briefly discussed in Section 4. InSection 5, the evolution
of the new system with respect to its key parameter is analyzed by means of Lya-
punov exponents and bifurcation diagrams for an associatedPoincaré map. The
final section concludes the paper.

2 The Unified Model

The unified chaotic model is given by the following system of equations:

x′ = (−0.65µ +10)
(

y−hµ (x)
)

y′ = (−27µ +28)x− y+ µz− (1−µ)xz

z′ = (1−µ)xy−14.79µy−
8
3

(1−µ)z

(7)

where we use the set of parameters (2) for the Lorenz system (1) and the set of
parameters (6) for the Chua system (4) withµ ∈ [0,1] as a control parameter. The



348 Z. Elhadj and J. Clinton Sprott:

joint functionhµ is given by:

hµ(x) =
(7−5µ)x

7
−

3µ
14

(|x+1|− |x−1|) (8)

which is a new proposed generalized characteristic function for the Chua’s diode
wherehµ is an odd and continuous piecewise linear function that connects the two
complex systems. Then the model (7) is a continuous system with three nonlinear-
ities xy,xz, andhµ(x), that with µ = 0 reduces to the original Lorenz system and
with µ = 1 reduces to the original Chua system.

The system (7) has at least two types of chaotic attractors when µ ∈ [0,1]:
Lorenz-type and quasi-attractors, because it connects theLorenz and the Chua sys-
tems and realizes the transition between them via the proposed joint functionhµ
given by (8). The control parameterµ in system (7) allows the evolution of dynam-
ical behaviors from the Lorenz attractor to the Chua attractor. The analytical study
of system (7) is difficult because it requires the solution ofa third-order algebraic
equation at each step.

3 Some Basic Properties

Whenµ ∈ ]0,1[, the unified system (7) is not symmetric under the natural coordi-
nate transforms(x,y,z) −→ (−x,−y,−z) and(x,y,z) −→ (−x,−y,z). Thus it does
not preserve the same symmetry properties of the Lorenz and Chua systems. Also
it is clear that thez-axis is not invariant. Therefore, the divergence of the flowis
given by:

∇V =
∂x′

∂x
+

∂y′

∂y
+

∂ z′

∂ z
=























10.46µ −0.46429µ2−
41
3

, if x ≥ 1

14.745µ −0.74286µ2−
41
3

, if |x| ≤ 1

10.46µ −0.46429µ2−
41
3

, if x ≤−1.

(9)

Thus if one has:

10.46µ −0.46429µ2−
41
3

< 0 and 14.745µ −0.74286µ2−
41
3

< 0, (10)

i.e.
0≤ µ < 0.97473, (11)

then the unified system (7) has a bounded, globally-attracting ω-limit set. Finally,
the unified system (7) is dissipative when 0≤ µ < 0.97473. Thus all trajectories
are ultimately confined to a specific subset having zero volume, and the asymp-
totic motion settles onto an attractor. This result has beenconfirmed by computer
simulations.
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4 Equilibrium Points and Their Stability

The equilibria of the unified system (7) are given by:

P(x) =

(

x,hµ (x) ,
3(1479µ −100x+100xµ)hµ (x)

800(µ −1)

)

, (12)

wherex is the solution of the equation:
(

440µ −224−216µ2)x+ s(x)hµ (x) = 0

s(x) =8−8µ +47.37
((

µ2−µ
)

x+ µ2)+
(

3µ2−6µ +3
)

x2
. (13)

Note that the origin is an equilibrium point for all the system parameters, and also
that the number of equilibrium points depends mainly on equation (13) where the
possible number of its roots is between one and nine.

After some tedious calculations, one has that the variablex satisfies the follow-
ing equation:

x3 + p1x2 + p2x+ p3 = 0 if x ≥ 1, andµ ∈ [0,1]

x = 0 andx2 + r1x+ r2 = 0 if |x| ≤ 1, andµ ∈ [0,1]−{0.875}

x3 + q1x2 + q2x+ q3 = 0 if x ≤−1 andµ ∈ [0,1]

(14)

where

p1 =
83.777µ2 −35.121µ3−48.656µ

3− 15
7 µ3 + 51

7 µ2− 57
7 µ

q1 =
78.634µ2 −32.55µ3−46.084µ

3− 15
7 µ3− 57

7 µ + 51
7 µ2

p2 =
2984

7 µ −216−142.61µ2 −54.137µ3

3− 15
7 µ3 + 51

7 µ2− 57
7 µ

q2 =
2984

7 µ −216−13.534µ3 −183.22µ2

3− 15
7 µ3− 57

7 µ + 51
7 µ2

p3 = −q3 =
24
7 µ2−20.301µ3− 24

7 µ
3− 15

7 µ3 + 51
7 µ2− 57

7 µ

r1 =
101.51µ2 −54.137µ3−47.37µ

69
7 µ2− 24

7 µ3− 66
7 µ +3

r2 =
2960

7 µ −216−159.49µ2 −54.137µ3

69
7 µ2− 24

7 µ3− 66
7 µ +3

d =2592−13221µ +28622µ2−34618µ3 +25480µ4

−11044.µ5 +2188.4µ6.

(15)
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For the case where|x| ≤ 1, the second equation of (14) has one solutionx1 = 0
if µ ∈ ]0.84176,1] . Also, we remark that the first and the third equations of (14)
have no zero solutions becausep3 = −q3 6= 0 for all µ ∈ [0,1] . Finally, finding the
equilibria of the unified system (7) requires in each case thesolution of a third-order
algebraic equation of the formx3 + Ax2 + Bx +C = 0, according to the position
of the variablex. By settingx = −A/3+ w, we have:w3 + Pw + Q = 0, where
P = −A2/3+ B andQ = 2A3/27−AB/3+C. If we set∆ = 4P3 + 27Q2, then if
∆ > 0, there is a unique negative real solution:

x = −
A
3

+

(

−
Q
2

+

√

Q2

2
+

P3

27

)
1
3

+

(

−
Q
2
−

√

Q2

2
+

P3

27

)
1
3

, (16)

and if ∆ < 0, there are three real solutions:

x1 =−
A
3

+2

√

−
P
3

sin

(

θ
3

)

x2 =−
A
3

+2

√

−
P
3

sin

(

θ +2π
3

)

x3 =−
A
3

+2

√

−
P
3

sin

(

θ +4π
3

)

(17)

whereθ = arcsin

(

√

−27Q2

4P3

)

∈ [0,π] .

The case∆ = 0 corresponds to a measure-zero set of parameters. Therefore, by
a slight perturbation of parameters, without changing the behavior of the system, a
system belonging to one of the two cases is obtained.

Let us now examine the stability of the equilibria of the unified system (7).
For this purpose, the Jacobian matrix at an equilibrium point P(x) given in (12) is
expressed by:

J (P(x)) =





(0.65µ −10)h′µ (x) −0.65µ +10 0
j (x) −1 (µ −1)x+ µ

(1−µ)hµ (x) (1−µ)x−14.79µ 8
3 (µ −1)



 (18)

where

h′µ (x) =











(

1−
5
7

µ
)

x, if |x| ≥ 1

−(8µ −7)

7
, if |x| ≤ 1

j (x) =

(

144.37xµ −3x2 +3x2µ
)

hµ (x)−216µ +224

8

(19)
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For studying the stability of these equilibria, the exact value of the eigenvalues
are obtained by using the Cardan method’s given above for solving cubic equations
λ 3 + Aλ 2+ Bλ +C = 0, where:

A =(10−0.65µ) h́µ (x)−
8
3

µ +
11
3

B =ξ1h́µ (x)+ ξ2hµ (x)+ ξ3

C =ξ4h́µ (x)+ ξ5hµ (x)+ ξ6

(20)

and

ξ1 =1.7333µ2−29.05µ +
110
3

ξ2 =

(

0.24375µ2 −3.9938µ +
15
4

)

x2 +
(

11.73µ2−180.46µ
)

x

ξ3 =(µ −1)2x2 +
1579
100

µ (µ −1)x−2.76µ2 +285.53µ −
832
3

ξ4 =b1x2 + b2x+ b3

ξ5 =b1x2 + b4x+ b5

ξ6 =46.8µ3−815.33µ2 +1515.2µ −
2240

3

(21)

and

b1 =
−(13µ −200) (µ −1)2

20

b2 =
−µ
(

2566µ2−42040µ +39475
)

250

b3 =−9.6135µ3 +149.63µ2−28.4µ +
80
3

b4 =
−(µ −1)

(

3193µ2−49188µ +1000
)

100

b5 =
−µ (µ −1)(13µ −200)

20
.

(22)

Note that if∆ > 0, there is one real eigenvalue given by equation (16) and two
complex conjugate eigenvalues:

(λC)± = −
A
3
−

wR

2
±

i
2

√

4P+3(wR)2 (23)

where

wR =

(

−
Q
2

+

√

Q2

2
+

P3

27

)
1
3

+

(

−
Q
2
−

√

Q2

2
+

P3

27

)
1
3

. (24)
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5 Numerical Simulation

In this section, the dynamical behaviors of the unified system (7) with respect to
the variableµ ∈ [0,1] are investigated numerically where the bifurcation diagram
is obtained via an appropriate Poincaré sectionΣ defined by:

Σ =
{

(x,z) ∈ R
2 / y = 0,

}

(25)

with the resulting points{xn}n∈N
computed using the Hénon method, and a set of

one of them is recorded after transients have decayed and plotted versus the desired
parameter as shown in Fig. 1(b). The calculations of limit sets of the unified system

Fig. 1. (a) Variation of the largest Lyapunov exponent of theunified system (7) versus
the parameterµ ∈ [0,1] . (b) Bifurcation diagram of the variablexn plotted versus control
parameterµ ∈ [0,1] .

(7) were performed using a fourth-order Runge-Kutta algorithm with a constant
step size∆t = 10−3 and initial conditions(−0.1,−0.1,−0.1). Then, to determine
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the long-time behavior and chaotic regions, we numericallycomputed the largest
Lyapunov exponent. To see some chaotic behavior of the unified system (7), we
present various numerical results. We present here some chaotic attractors with all
the phase portraits shown in thex-z plane.

Fig. 1(a) shows the largest Lyapunov exponent of the unified system (7) with
respect to the parameterµ ∈ [0,1]. There are apparently several equilibrium zones,
several periodic zones, and at least four chaotic zones corresponding to a positive
Lyapunov exponent. The Lorenz attractor obtained forµ = 0, a stable equilibrium
for µ = 0.1, a strange attractor forµ = 0.4, and a limit cycle obtained forµ =
0.5 are shown in Figs. 2(a)-(d), respectively. Some additional periodic orbits are
shown in Figs. 3(a)-(c) for larger values ofµ along with the Chua chaotic attractor
obtained forµ = 1 in Fig. 3(d).

Fig. 2. Phase portraits of the unified system (7). (a) The original Lorenz chaotic attractor
obtained forµ = 0. (b) A stable equilibrium obtained forµ = 0.1. (c) Another chaotic
attractor obtained forµ = 0.4. (d) A periodic orbit obtained forµ = 0.5.

6 Remarks

Here are some concluding remarks about the dynamics of the unified system (7)
concerning homoclinic and periodic orbits:
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Fig. 3. Phase portraits of system (7), where (a) and (b) and (c) are periodic orbits obtained
for µ = 0.6,µ = 0.8, andµ = 0.9 respectively. (d) The original Chua chaotic attractor
obtained forµ = 1.

1. There are no homoclinic orbits of the Shilnikov type for system (7) contain-
ing the equilibrium point(0,0,0) when 0< µ < 1, because it is easy to show
numerically that∆ < 0 if 0 ≤ µ < 0.97526, and∆ ≥ 0 if 0.97526≤ µ ≤ 1.
Thus(0,0,0) is of a saddle-focus type when 0.97526≤ µ ≤ 1, and the cal-
culation of the largest Lyapunouv exponent shows that the unified system
(7) converges to a chaotic orbit for 0.97526≤ µ < 1 as shown in Fig 1(a).
Hence there is no homoclinic orbit containing the equilibrium point(0,0,0)
that emerges from the Lorenz system to the Chua system.

2. Some periodic orbits do not result from a Hopf bifurcation. For example, for
µ = 0.6, the unified system (7) has a periodic orbit as shown in Fig. 3(b). Its
equilibrium points areP1 = (27.343,15.367,29.724) with the eigenvalues
{−171.09,−1.0417,164.57} andP2 = (−4.1214,−2.0980,20.695) with
the eigenvalues{−35.641,−0.94866,29.031} and P0 = (0,0,0) with the
eigenvalues{−13.969,−0.84169,7.2526} .

3. For µ = 0 andµ = 1, it is well known that there are regions of multiple
attractors, but for 0< µ < 1, there are no observed regions of multiple at-
tractors.
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7 Conclusion

This paper introduces the dynamical behaviors of a unified chaotic system that
can describe a two-family chaotic system containing the original Lorenz and the
original Chua systems as two extremes and some other systemsas a transition in
between via a new constructed joint function using a simple variable constant con-
troller. The unified system (7) has contributed to a better understanding of the
relationship between the Lorenz and Chua systems and therefore deserves further
investigation.
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