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Mid-Term Load Forecasting Using Recursive Time Series
Prediction Strategy With Support Vector Machines

Milo § B. Stojanovi, Milo§ M. Bozi¢, and Milena M. Stankovic

Abstract: Medium term load forecasting, using recursive time - sgriesliction strat-

egy with Support Vector Machines (SVMs) is presented inplaiger. The forecasting
is performed for electrical maximum daily load for the perif one month. The data
considered for forecasting consist of half hour daily loadd daily average temper-
atures for period of one year. An analysis of available dada performed and the
most adequate set of features for our model are chosen. Bhragion of prediction

accuracy we used data obtained from electricity load fatog competition on the
EUNITE network. Some drawn conclusions from the resultdfsmethe temperature
significantly affects on load demand, but absence of futemgperature information
can be overcome with time - series concept. Also, it was shbatsize and structure
of the training set for SVM may significantly affect the acacy of load forecasting.

Keywords: Load forecasting, support vector machines, time serigsession.

1 Introduction

OR electric utilities it is important to have accurate loadswaisting for different
time periods. With the deregulation of the energy industriead forecasting
is even more important especially for dispatcher who canenhalter decisions and
comply with them. Thus, electric utilities reduce occuoes of equipment failures
and blackouts.
Forecasting depending on a time period can be generallgativinto three
types: long term, medium term and short term. Each type hasriant role on
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economic and reliable operation of electric utilities. Whes to build or upgrade
new lines and sub-stations may be shown by long term predictihich is made
for period of one to several years. Medium term load foréegsis related to
time period from few days to few weeks or mounts and it is useméet the load
requirements at the peak of summer or winter season. Shoriéad forecasting
is important for operations like real time generation coltsecurity analysis and
energy transaction planning. Usually short term load faséng covers a period
from one hour to few days.

Most forecasting techniques have already been tried oubad forecasting
with different degree of success. Some of these techniquigish are especially
popular in recent years, are: neural networks, fuzzy logit @pert systems. The
usage of Artificial Neural Networks (ANNSs) [1] has been a vydgtudied electric
load forecasting technique. More recent powerful machsaening techniques for
electric load forecasting are SVMs [2], which are one of tigmificant develop-
ments in overcoming shortcomings of ANNs. Unlike ANNSs, whicy to define
complex functions of the input feature space, SVMs perfommomlinear mapping
(by using so-called kernel functions) of the data into a hilginensional space.
SVMs then use simple linear functions to create linear d@tiboundaries in the
new space. Thus, a nonlinear problem in the original lowerediisional input space
could find its linear solution in the higher dimensional teatspace. The problem
of choosing architecture for ANN is replaced in SVM by the lgeon of choos-
ing a suitable kernel. Various modifications of SVMs occusatutions of electric
load forecasting. Also, combination of other artificialafigence techniques with
SVMs can be found in [3, 4]. In this paper, an attempt is beiraglento predict
maximum daily load for period of one month, using differeatad sets and fea-
tures. The paper is organized as follows: Section 2 demnaisstithe techniques
we employed. Section 3 explains our proposed model. Sedtawscribes derived
experiments. Section 5 presents experimental resultsranelps an evaluation of
our model and section 6 presents the conclusions.

2 Methods

2.1 Time series prediction

Predicting time series is of great importance in many domafrscience and en-
gineering, such as finance, electricity, environment amdbgy. A time series is a
sequence of observations made through time, in the formabver scalar [5].
Time series prediction can be considered as a problem of &Infimcnation
that establishes a mapping between the input and outputsialfter such model
is formed, it can be used to predict the future values baseth®@mprevious and
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current values. The previous and the current values of the series are used as
inputs for the prediction model:

{yt+21),yt+2),....y(t+h)} =F(yt),yt—21),...,y(t—m+1)) (1)

whereh represents the number of ahead predictidhss prediction model anch
is size of regressor.

Time series prediction can be divided into two categoriggedding on pre-
diction time period: short term and long term [6]. Short tgradiction is related
to one “step ahead prediction.” The goal of long term préalicts to predict val-
ues for several steps ahead. In long term prediction prajegaf errors and the
deficiency of information occur, which makes the predictinore difficult. For
long-term prediction there are two different approachas¢hn be used: direct and
recursive. In following section, an approach for recurgivediction is presented.

2.2 Recursive prediction strategy

Recursive prediction strategy uses the predicted valuksasn data to predict the
next ones [7]. The model can be constructed by making omeattead prediction:

y(t+1) =F(y(t),y(t—1),...,y(t—m+1)). (2

The regressor of the model is defined as the vector of ingutsy(t —1),...,y(t —
m+ 1), wheremis the size of regressor. To predict the next value, the saot®im
is used:

y(t+2) = F(y(t+1),y(t),...,y(t —m+2)), 3)
and forh" prediction:

y(t+h)=F(y(t+h—1),y(t+h—2),...,y(t —m+h)). 4)

It is important to notice in 3, that the predicted valuey(if+ 1) is used instead of
the true value, which is unknown. Thensteps ahead predictions, frort + 2) to
y(t + h) are predicted iteratively. Thus when the regressor lengthlarger tharh,
there aren— hreal data in the regressor to predict tifestep. But whem becomes
larger thenm, all the inputs are the predicted values. Usage of the peatlialues
as inputs affects on the accuracy of the prediction in cadenw significantly
exceedsn.

2.3 SVM

SVMs are developed based on statistical learning theorgngby Vapnik [8] in
1995 to resolve the issue of data classification. Two yeées khe version of SVM
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is proposed that can be successfully applied to the datassign problem. This
method is called Support Vector Regression (SVR) and itdsbst common form
of SVMs that is applied in practice [9].

SVMs are based on the principle of structural risk minim@aa(SRM), which
is proved to be more efficient than the empirical risk miniatian (ERM), which
is used in neural networks. SRM minimizes an upper bound péebed risk as
opposed to ERM that minimizes the error on the training dbabd [

SVMs implement a learning algorithm that performs learrirgn examples
in order to predict the values on previously unseen data. goa of SVR is to
generate a model which will perform prediction of unknowrpa values based
on the known input parameters. In the learning phase, tmedion of the model
is performed based on the known training datayi), (x2,¥2), ..., (X, Yn) Where
X are input vectors, ang outputs associated to them. Each input vector consists
of numeric features. In the phase of application, the tchimedel on the basis of
new inputsxy, Xo, . .. , X, Makes prediction of output valugs, Y-, ...,yn. SVRis an
optimization problem [9], in which is needed to determine ffarametersy andb
to minimize:

H 1 T A ] *
i S w+Ci;(é. +&) (5)
with conditions:
yi — (@ @(x)+b) < e+ &, (6)
(W (%) +b) -y <e+&, ©)

Eiaéi* 207| :1a27"'7n7

wherex; is mapped in the multi-dimensional vector space with noadimmapping
@. & is the upper limit of training error ang* the lower. The idea of SVR is based
on the computation of a linear regression function in a highetsional feature
space where the input data are mapped via a nonlinear fanctio

The parameters that control the quality of the regressierkarnel function,
C ande. Cis parameter which determines the "cost of error”, i.e. uetees the
tradeoff between the model complexity and the degree tolwtieviations larger
thane¢ are tolerated [11]. A larger values f@rreduces the error on training data
but yields a more complex forecasting function that is mi&y to overfit on the
training data [12]. Parametercontrols the width of insensitive zone, and hence
the number of support vectors (vectors that lying on a masfjiihe tube) and errors
that lying outsidee zone [13].

The goal of SVR is to place as many input data inside the fyibe w' @(x) +
b)| < &, which is shown in Fig. 1. I is not inside the tube, an error occuor
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¢*. Loss function assigns errors only to thogdor which é > € or &* > € [12],
and it is defined with:

if
|a|={°’ Tlgl<e @®)

€] —¢€, else

f= wed(Xx)+b

Fig. 1. € tube of nonlinear SVR.

The problem can be solved using Langrange multipliers j&d, tae solution is
defined with:

n

f(x) = Zl(ai*—ai)K(xi,x)er 9)
1=

whereK (x;,x) represents kernel function, defined as dot product betwggn’
and@(x). More about SVR can be found in [9], [12].

For the experiments we used a publicly available libraryS\iM - A Library
for Support Vector Machines [14] which we integrated in aoftware for recursive
time series prediction.

3 Data Analysis

Before selecting features for our model, some observatibost the data are exam-
ined first. Relations between load demand and other infeomasuch as climate
influence or local events are observed and these relatianddshe taken into ac-
count during the formation of model. The data used for expenits were provided
by the Eastern Slovakian Electricity Corporation for theNHDE competition [15].

Properties of Load DemandLoad demand data given are half-hour recordings
for one year. In Fig 2. maximum daily loads and average daityperatures for
the period of one year are presented.
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Fig. 2. Load pattern and temperature during period of one yea

Relations between electricity usage and weather conditiodifferent seasons
are observed from data in Fig 2.Load demand in winter pesaddgher compared
to summer period. Also, in winter period of the year varian€éoad demand is
high with many peaks while relatively constant in summeiqaerReason for this
behavior of load demand is mainly temperature variations.

Additionally, another load pattern could be observed, figi3. We can notice
that the load almost periodically exists in every week widitgrn where load de-
mand in weekend is usually lower than in weekdays. In Fig 3klydload patterns
for weeks in January and July are given.

Climate influence Climate conditions influence on load demand pattern anal-
ysis may include temperature, wind speed, humidity, presand illumination. In
this paper the most important climate parameter is corsijdemperature. Rela-
tion between climate and load demand also was shown in previorks on short
term load forecasting [1, 3]. From Fig 2. it can be easily obsg negative cor-
relation between maximum daily load and temperature. Refsahat is heating
usage in winter period of year.

Holiday influence Holidays and other local events also may affect the load
demand [2]. These events are usually local and their infeehaghly depend on
the customs of the area. Major holidays such as ChristmagwrYéar have more
influences on load demand then other holidays.
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Fig. 3. Weakly load patterns in winter and summer period.

4 Experiments

In this section, we consider what kind of information shooédused for features to
build appropriate SVM models.

Calendar attributes. We mentioned earlier that load is periodic by week. On
the other hand, many works [1, 3] have used the calendarniaftoon to model
the load forecasting problem. Because of that, we decidese¢aday of the week
as feature in some models and see how it affects on the agcafgirediction.
Additionally, holiday information can be useful to mode¢throblem because load
demand on holidays might be lower than that on non-holidByg, small number
of holidays during the year makes the problem for SVM to tthinmodel well.

Temperature. Weather information which includes temperature, wind dpee
sky cover, humidity and etc., has also been used in most sterh load forecast-
ing works [3]. But there is one difficulty: for mid-term loadrecasting, tempera-
ture information for several weeks away is needed. If we i@nise temperature
information in our model, we will also need to predict the parature. The usage
of temperature, therefore, is not an option when forecgssiperformed for period
longer than one week. Yet, temperature forecasting is a wamgplex problem
than load forecasting.

Time series.Another information which we considered to encode as theifea
in our model is the past load demand. Reason for this is tegbdist load demand
could affect and imply the future load demand. With this apgh, concept of
time-series is introduced into our models [2]. We used fgressor sizen = 7,
which means that seven past daily load demands are usedfards.
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The various factors that affect the load forecast are ardlynd appropriate
features are chosen. Then we form vectors which will be usédpts for SVM.

Our proposed model is shown in Fig 4. Input vectors for SVM glasl composed
of the following features:

e Maximum daily load for past seven dag_x),.k=1,...,7,
e Average daily temperaturgs),
e Day Of the Week D).

Data are scaled before training to range [-1,1] [14]. Dayhefweek is coded
with numeric values from 1 to 7, where 1 represents Mondayexsday, . .., etc.

All features except time - series are used optionally, ievesal models are
formed with different combinations of features.

SVM |~

Load demand

Days

Fig. 4. Proposed architecture.

On the basis of established vectors and the known valueseolbtd in the
selected time interval SVM generates model which foredhstdoad for a period
of one month.

Forecasting performance of the SVM significantly dependmfselection of
their parameters. In addition to the selected featuresrdardo train the model,
we should determine the kernel function and its parameteas, SVR parameters
C ande.

Radial basis function (RBF) [16] for the kernel is choserfirekl with:

K(x,x) =e Yy~ 0 (10)

The kernel parameter defines the width of the kernel to reflect the range of
the training data in feature space and therefore the abilizn SVR to adapt to the
data [11].

It is necessary to determine the parametérand y. It is not known in ad-
vance which values of these parameters are best choice feem groblem. The
parameters were determined using Grid-Search [14] andsSfaaation [17].
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A simple method to determine SVM parameters is a systemaiut-&earch
over the parameter space. Instead of evaluating everylpegsarameter com-
bination, which would be time consuming, a grid using ecgiaht steps in the
parameter space and limits the search complexity. In oueraxgnts we search
couplesC andy exponentially in rang€ = 2-° — 220 andy = 2~ 15— 23 with steps
0.5and 0.1.

For evaluation how model performs prediction with diffareairs of parame-
tersC andy, k fold Cross-Validation procedure is used. The trainingsetandomly
divided into training and testing parts, in relationkl Then the learning algorithm
is applied to training part with current values@fandy. Then, evaluation of the
prediction quality is performed on testing part. This peha® is repeatel times
and a pailC andy is selected, with which the best prediction is achieved.

In time series prediction problengscorresponds to the level of noise in a time
series [13]. Large values af allow an approximation of a time series with high
noise as opposed to overfitting the noise. In our appr@aalas not included in
Grid-Search procedure, so we tungmanually” for each test set.

After training several different SVM models based on défartraining sets, we
used them for recursive prediction of load demand. For exeits described in
this work we develop an application that performs recurtive series prediction
with SVR. Also, other features can be included in prediGtihich are not time
series type (e.g. temperature, day of the week, ...). Pseode of recursive
prediction of load demand for given period of time is givetole
i =0
STATI C.VECTOR=[ Dj, Tj]

TI MEAVECTOR=[P,_7,Py_6,---,Pn_1]

WHI LE (i <NUMBER OF_PREDI CTI ONS)

BEG N

I NPUT_VECTOR = CONCATENATE( STATI CVECTOR, Tl ME_VECTOR)
R = SVR(| NPUT_VCTOR)

RESULTS[i] = R

TI MEVECTOR = SHI FTLEFT( Tl ME.VECTOR)
TI MEVECTOR[ 6] =R

i=i+1

STATI C.VECTOR = [Dj, T]

END

VALI DATE ( RESULTS)

CALCULATE MAPE

PRI NT ( RESULTS)
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5 Experimental Results

In electricity load forecasting, the prediction accurasgénerally evaluated using
Mean Absolute Percentage Error (MAPE) [2], [18]. The edquatiescribing this
error is: R
12 |PR-R
MAPE = 100= Zl ;' (11)
n.& R

whereP, andP are the real and the predicted value of maximum daily eleaitri
load on the™ day andh is the number of predictions.

To evaluate the accuracy of the model, maximum daily loaédasting for
one month ahead (January) is done. Training model was caetmnitith several
different data encodings and segmentations. Table 1 shaWBW&rrors generated
by different data encodings and segmentations. The firshuolrepresents used
data segments while first row shows which features are useditiénal, estimated
and real load demand for January, using "Winter” segmeantshown in Fig. 5.

Table 1. MAPE using different data preparation for one mdathcasting.
Segment | Temp&Day&TS | Day&TS | TS

Winter 1.79 2.23 3.94
Dec-Jan-Feb 2.64 3.32 4.62
All 2.52 6.32 5.52

In Table 1, it can be observed that models built with tempeeateature, ex-
ceed all other. This is expected because load demand idyclesgted to the tem-
perature. Of course, it should be noticed that for the moelgirtg (forecasting
load demand for given period) real temperature is used. nbisa problem when
forecasting period is one week. In that matter it can be usedigted temperature
because it is relatively close to real temperature. Thelpmolwccurs when fore-
casting period is several weeks or month. Then the temper&unot available
because one month ahead temperature prediction is nosgrasione week ahead
prediction.

Unavailability of precise temperature for one month ahdwd led to usage
other features with the aim of reducing MAPE error. Table dvahthat model
built with time-series and day features, using the "Winteggment, exceeds all
other models without temperature feature. MAPE error i©xéign case when
models were trained with "Dec-Jan-Feb” segment, becauseltdta segment can-
not provide enough information for models compared with"ivnter” segment
that contains more entries. On the other hand, when the nalned with "All”
segment, which is formed from data of whole year, MAPE ersosignificantly
higher because this training set adds noise into the mot&. because summer
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period is present in "All” segment.
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Day&TS
800 |----TS
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Fig. 5. Estimates and real load demand for Jan.

As previously stated, from Fig 5 it can be observed that thet tesult is ob-
tained with the model build using time - series and day femtuiThe most devia-
tions from real load are in days 1 and 6. Reason for that ittlags are holidays.
At first, holiday information has been included in our modehe problem is that
there is insufficient data on holidays to train the model wafid it makes pre-
dictions even harder on these days. That is why we removedayoinformation
from our models, so in days of holidays we have error, but heotays error is
significantly reduced.

6 Conclusion

Several SVM models are formed using different features imtdoations with dif-
ferent data segments for training. We find out that choiceppf@priate data seg-
ments may improve performance of models, because the lgadrikhas different
distribution in different seasons. Furthermore, modelklhwith climate informa-
tion (temperature) require future climate data for sewassks away. This difficult
may lead to inaccurate prediction, and because of that med#iout temperature
feature were build. Rejection temperature feature from eteohcreases models
error. However, this difficulty is overcome using time - serstrategy and obtained
results are close to results with temperature feature. gtnaunodels for one month
ahead prediction require further investigation in thedimn of selection appropri-
ate features and data segments. Also it is necessary to firay &ew to involve
holiday information in models to obtain better predictiondiays of holidays.
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