
FACTA UNIVERSITATIS (NIŠ)
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Non-uniform Threshold as an Alternative to Uniform
Threshold in Denoising in Wavelet Domain

Mitko Kostov, Cvetko Mitrovski, and Mom čilo Bogdanov

Abstract: In this paper we present the advantage of non-uniform over uniform thresh-
old wavelet shrinkage denoising method, applied on noisy signals with signal depen-
dent noise. We illustrate our results by comparing the noiseenergy after using the
both filtration methods on the same set of artificially noise contaminated images. The
experiments are made with NPR-QMF filter banks instead with the filter banks that
are commonly used in wavelet applications.

Keywords: Denoising, filter bank, signal-dependent noise, threshold, wavelet do-
main filtering.

1 Introduction

L ATELY , there are many developed methods for image noise filtration in a trans-
formation domain [1–8]. In the last decade the stress on researches in this

field is put on the signal processing in the wavelet domain.
The reason of using the wavelet transform for denoising purposes is that ad-

equately chosen wavelet basis groups the coefficients in two groups - one with a
few coefficients with high SNR, and other with a lot of coefficients with low SNR.
In case of white Gaussian noise, the noise level is same through whole signal and
for all the wavelet coefficients, independently on the signal. So, choosing a global
threshold shrinks all the coefficients for an equal portion. But, in some signals,
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like nuclear medicine (NM) images, the noise level is proportional to the local sig-
nal intensity. Obviously, denoising them with a global threshold is not the best
solution.

In this paper we present results obtained by using our non-uniform threshold
shrinkage method for removal of signal-dependent noise. We illustrate that noise
energy in the filtered signal is bigger when any global threshold is used compared
to the case when the proposed non-uniform threshold is used. We disclose some
results of denoising of standard test images when our method and known methods
are used. The paper is organized as follows. The method uses standardwavelet
filtering outlined in Section II. In Section III we discuss how to estimate the varying
threshold. In Section IV we verify the validity of our approach on deterministic
signals contaminated with signal dependent noise. At the end, Section V concludes
the paper.

2 Wavelet Shrinkage Method

The most popular form of conventional wavelet-based signal filtering [9], can be
expressed by:

{A(k)
,D(1)

,D(2)
, . . . ,D(k)} = DWT(s+n)

s∗ = IDWT( f (A(k)
,h(1)
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wheres is noise-free signal,n is noise,s∗ is filtered signal,A(k) andD(k) are ap-
proximation and detail coefficients at levelk, respectively,f is a function of the
modified detail and approximation coefficients,.× is element-by-element multi-
plying and

h(k) = [h(k)
1 ,h(k)

2 , . . . ,h(k)
j ]T

are weighting coefficients of the corresponding detail coefficients at level k.
In case of conventional hard threshold filtering the weighting coefficientsare

h(k)
j (hard) =

{

1, if |D(k)
j | > τ(k)

0, otherwise
, (2)

while for the soft threshold filtering they are
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whereτ(k) is user specified threshold for thek-th level details.
Having in mind that the noise is proportional to the local signal intensity, in-

stead of using a global thresholdτ(k) in (3), we propose using a user specified
varying threshold,τ(k)

j , that depends on the details positionj.

3 Non-uniform Threshold determination

The approximation coefficients contain the low frequency part of the signal. There-
fore one could say that the information part or ”identity” of the signal is contained
in the approximation. So, if we assume that the noise is proportional to the local
signal intensity at certain levelk, then the non-uniform threshold vector should be
expressed as

τ(k) = α|A(k)|, (4)

whereA(k) is matrix with the approximation coefficients at levelk, andα is a con-
stant which should be determined by equalizing of the energy of the modified vec-
tors of the approximation and the detail coefficients,An

(k) andDn
(k), respectively,

by using the following formulae:

∑
i

(D(k)
n,i )

2 = ∑
i

(αA(k)
n,i )

2
. (5)

The modification of the detail coefficientsD(k)
n is obtained fromD(k) by using

the following reasoning. SinceD(k) contain the high part of the spectrum of the
original signal, its coefficients frequently change their polarity with the position
(time). Whenever the change of the polarity of two consecutive local extremes
(peeks) occur, one can discard all the detail coefficients on the positions between
those peaks (due to their negligible magnitudes) in order to obtainD(k)

n from D(k).
Hence,Dn

(k) is a vector identical toD(k) on all positionsj, except on the posi-
tions between the consecutive peeks with opposite polarities inD(k) whereDn

(k) is
zero, while vectorAn

(k) is constructed by using

An
(k) = A(k)

.×sign(Dn
(k)). (6)

Since the coefficientsDn andαAn have equal energy, it holds that for the posi-
tions j, for which |Dn, j| > α|An, j| the signal is less noise contaminated, and where
|Dn, j| < α|An, j| the signal is more noise contaminated.

In general, we can assume that for noise stands polynomial dependenceon the
local signal intensity, hence, for the thresholdτ at some levelk the following can
be written:
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τ(k)
j = α(k) · [1A(k)

j (A(k)
j )2 · · ·(A(k)

j )n]T , j = 0, · · ·L−1, (7)

whereα(k) = [α(k)
0 α(k)

1 . . .α(k)
n ],L is the length of the vectorsA andτ. The coeffi-

cientsα0, α1, · · · can be obtained by minimizing:

E(k) =
1
2 ∑

j

(|D(k)
n, j|− τ(k)

j )2 (8)

in the smallest squares sense.

4 Experimental Results

In this Section, we illustrate the effects of denoising the artificially contaminated
signals (images) by applying the conventional shrinkage methods and our proposed
non-uniform threshold approach. The noise energy in the filtered signal is higher
when any global threshold is used compared to the case when the proposed non-
uniform threshold is used.

The noise contaminated images are generated by superpositioning of shifted2D
random Gaussian functions (centered at position(i, j)) with energies proportional
to the pixel intensities at position(i, j) in the noise-free images.

By applying of the conventional and proposed method we obtain filtrated im-
agess1 (normalized to the energy of the noise free imagess), and compare with the
energy of the noise free images by using the following formula

En = ∑
i, j

(si, j − s1 i, j)
2
. (9)

When the signal in Fig. 1a is filtered by using the proposed method we obtained
1586 for the noise energyEn. The proposed algorithm uses NPR-QMF filters with
length 12, stopband frequency 0.7π, and overall reconstruction error of the de-
signed QMF bank 0.001 [10]. In addition, we filtered the signal by using standard
technique of wavelet shrinkage [9] and used different wavelets and different values
of the uniform thresholdτ. The graph for dependence ofEn on τ for values of
τ between 0 and maximal intensity in the detail coefficients is plotted in Fig. 2a.
The threshold valueτ = 0 means that all the detail coefficients are kept, while the
valueτ = 1 (which corresponds to a threshold equal to the maximal intensity in the
detail coefficients) means that all the detail coefficients are discarded. From Fig.
2a it can be noticed that for any value of the uniform threshold, the energy of the
remained noise is not smaller than 1586. This comes from the fact that using a
uniform threshold for removing signal-dependent noise is not an adequate solution.
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(a) (b)

(c) (d)

Fig. 1. Deterministic test noisy signals.

Similar results are presented in Fig. 2b. The graph shows dependence ofEn on
τ after applying operation of variance normalization [1] on the images beforethey
are filtered by using standard wavelet shrinkage.

(a) (b)

Fig. 2. (a) Dependence of the noise energyEn on the uniform thresholdτ for the test signal in Fig. 1;
(b) Dependence of the noise energyEn on τ after the variance stabilizing operation is applied.
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(a) (b)

(c)

Fig. 3. Noisy images.

Table 1. Comparison of the proposed with known methods in case of true signal estimating in the
test images in Fig. 1.

Image SNR1 Wavelet

∆SNR Known methods ∆SNR Proposed algorithm
Visu Sure Bayes Press Var. Xu- Bi Prob Energy LS

Shrink Shrink Shrink stab. Weaver Shrink Shrink equalizing minimization
[2] soft/hard [4] [6] [5] [1] [3] [7] [8] soft/hard soft/hard

Phantom 2.92dB

sym3 1.19/0.13 0.28 0.89 0.86 1.30 2.03 0.37 0.51

2.47/1.71 2.38/1.52
sym5 1.19/0.14 0.28 0.88 0.86 1.29 1.79 0.33 0.50
db3 1.19/0.13 0.28 0.89 0.86 1.30 2.01 0.37 0.51
db5 1.19/0.10 0.28 0.73 0.86 1.18 1.98 0.37 0.44

Circles 4.38dB

sym3 4.00/1.65 0.21 4.08 1.35 3.50 3.36 1.14 2.04

4.46/2.67 4.22/2.33
sym5 3.97/1.55 0.21 4.06 1.34 3.49 2.98 1.00 1.98
db3 4.00/1.65 0.21 4.08 1.35 3.50 3.32 1.13 2.04
db5 3.81/1.19 0.21 4.07 1.34 3.38 3.22 1.08 1.75

Bars 4.38dB

sym3 2.71/2.02 0.17 2.14 0.99 2.61 2.24 1.23 1.87

2.85/1.89 2.73/1.68

sym5 2.71/2.00 0.17 2.20 1.00 2.62 2.03 1.07 1.85
sym7 2.74/1.97 0.17 2.22 1.00 2.64 2.20 1.18 1.84
db3 2.71/2.02 0.17 2.14 0.99 2.61 2.22 1.23 1.87
db6 2.74/2.04 0.17 2.21 0.99 2.64 2.22 1.24 1.88
coif3 2.74/1.96 0.17 2.25 1.00 2.64 2.19 1.19 1.84
coif5 2.74/1.89 0.17 2.30 1.00 2.66 2.19 1.17 1.80
bior9/7 2.70/1.96 0.17 2.19 1.00 2.60 2.14 1.18 1.85

Further, we made experiments with the images in Fig. 1 and Fig. 3. They both
contain signal-dependent noise with rather low SNR. The images in Fig. 1 arestan-
dard nuclear medicine test images, while the images in Fig. 3 are well known test
images commonly used for comparing performances of different image processing
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techniques. The maximal intensity in all three images in Fig. 1 is 22. The perfor-
mances of the applied filtration methods obtained with various wavelet-based filter-
ing methods, are presented in Table 1 in which SNR1 is signal-to-noise ratio for the
generated images while∆SNR is the improved signal-to-noise ratio (after the filter-
ing). When the proposed method is used with two differently generated thresholds
(the last columns) it can be noticed that the filtering with non-uniform threshold
determined through energy equalizing (Eq. 5) gives better results compared to the
filtering with non-uniform threshold determined through LS minimization of the
square measure (Eq. 8).

The results of filtering the images in Fig. 3 are shown in Table 2. They are
similar to the results in Table 1. From both Table 1 and Table 2 the advantage
of the non-uniform threshold shrinkage over the uniform threshold shrinkage is
evident.

Table 2. Comparison of the proposed with known methods in case of true signal estimating in the
images in Fig. 3

Image SNR1 Wavelet

∆SNR Known methods ∆SNR Proposed algorithm

Visu Bayes Press Var. Xu- Bi Prob Energy LS
Shrink Shrink stab. Weaver Shrink Shrink equalizing minimization

[2] soft/hard [6] [5] [1] [3] [7] [8] soft/hard soft/hard

Lena 5.27dB

sym3 5.00/4.68 2.81 1.49 4.38 3.72 2.13 3.83

5.10/3.04 4.81/2.63
sym5 4.97/4.69 2.80 1.49 4.35 3.28 1.82 3.80
db3 5.00/4.68 2.81 1.49 4.38 3.67 2.13 3.83
coif5 4.98/4.70 2.80 1.49 4.33 3.47 1.88 3.80
bior9/7 4.90/4.62 2.79 1.47 4.27 3.61 1.96 3.75

House 5.76dB

sym3 5.22/4.95 2.94 1.56 4.52 3.89 2.11 3.99

5.29/3.17 4.99/2.74
sym5 5.14/4.87 2.89 1.56 4.47 3.39 1.80 3.96
db3 5.22/4.95 2.94 1.56 4.52 3.87 2.11 3.99
coif5 5.14/4.84 1.54 4.45 3.62 1.87 2.11 3.94
bior9/7 5.07/4.72 2.87 1.54 4.39 3.69 1.94 3.88

Camera 5.32dB

sym3 4.58/3.99 3.19 1.42 4.00 3.48 1.69 3.27

4.71/2.86 4.46/2.50
sym5 4.59/4.07 3.16 1.43 4.02 3.08 1.47 3.30
db3 4.58/3.99 3.19 1.42 4.00 3.46 1.68 3.27
coif5 4.58/4.13 3.11 1.43 4.02 3.23 1.49 3.49
bior9/7 4.54/3.97 3.15 1.42 3.96 3.33 1.58 3.26

5 Conclusion

In this paper we compare non-uniform and uniform threshold filtering methods on
denoising artificially noised deterministic test images. Experimental results show
that for the signal-dependent noise filtering with non-uniform threshold outper-
forms uniform threshold filtering for any level of the threshold and all used wavelets
we have experimented with.
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