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MORE ON FILTER-GENERATING SYSTEM

Sead Samadi and Akinori Nishihara

Abstract. It is known that some families of digital �lters may be repre-

sented by single multidimensional transfer functions called �lter-generating

functions. Previous examples of such �lter-generating systems were related

to the class of maximally at FIR digital �lters. The purpose of this paper

is to show that the Chebyshev kernel used in the McClellan transformation

of 1-D �lters, and the Sylvester-type Hadamard transform, also known as

the Walsh-Hadamard transform also possess simple multidimensional gener-

ating functions. Explicit formulas for the generating functions are derived

and �lter-generating systems for their implementation are discussed.

Key words: IIR digital �lter, McClellan transformation, Hadamard trans-

formation.

1. Introduction

An important distinction of the �eld of digital signal processing from
other related engineering and mathematical disciplines lies in its heavy usage
of the Z transform for representation and manipulation of signals and �lters.
Traditionally, engineers have used this important tool, known to mathemati-
cians through the method of generating functions, to describe single signals
and �lter transfer functions. In the �eld of combinatorics, mathematicians
make extensive use of generating functions for enumeration purposes [1]. In
the theory of special functions, generating functions of important families
of polynomials have been known for a long time. A classic textbook on the
Z transform is that of Jury [2], and a recent work on generating functions
is the interesting book of Wilf [3].

In [4] the authors showed that the notions of the Z transform and
generating functions can be extended to provide concise representations of
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whole families of some classes of interrelated transfer functions. In addition
to the usual discrete time indices, the usage in [4] involves a new group of
indices that specify and enumerate the members of the family. We coined the
term �lter-generating function to signify the resulting mathematical entity.
The system implementation of a �lter-generating function was then called a
�lter-generating system. As a concrete example, we derived a 3-D IIR �lter-
generating function that could generate the entire family of maximally at
FIR �lters of linear-phase type. It was also shown that a �lter-generating
function may be used to generate modular structures for implementation of
the members of the family. This gives a systematic mathematical method
for multiplexing a single low-order digital �lter from the family to generate
the entire members by trading processing time for less number of adders
and multipliers. Figure 1 illustrates the three main applications of �lter-
generating systems.

Filter-Generating Systems

Compact Formula
for Entire Family

1) Computation of Impulse
Response Coefficients
2) Design of New Families

Development of Modular
Array Structures for the
Family.
(Useful in Systolic Array
Techniques)

Implementation of any
Member of the Family using
a  Multidimensional System
of Low Order 

Fig. 1. Possible applications of �lter-generating systems.

In [5] we showed that the more general class of nonlinear-phase maxi-
mally at �lters also possess a generating function. Though we only worked
out maximally at examples in [4] and [5], this does not mean that the use of
�lter-generating functions is limited to maximally at �lters. In this paper
we see that it is possible to derive generating functions for some classical �lter
kernels and linear transforms as well. Speci�cally, the Chebyshev kernels and
Sylvester-type Hadamard transforms are discussed. The Chebyshev kernels
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are well known in the literature on multidimensional �lter design in connec-
tion with the McClellan transformation. The Hadamard transforms have
found various applications in communications and signal processing [10]. By
deriving generating systems for these two fundamental tools we will be able
to gain a strict and uni�ed mathematical view of their properties, and algo-
rithms and structures for their implementation. We also develop structures
based on the newly derived �lter-generating systems.

This paper is organized as follows. After a brief review of the concept of
�lter-generating systems in Section 2, we derive a generating system for the
family of �lters designed using the McClellan transformation in Section 3.
Then we give a thought-provoking generating system for the Sylvester-type
Hadamard transform in Section 4. Finally, we identify some open problems
and draw conclusions in Section 5.

2. The Concept

In this section we review the concept of �lter generating systems. A
more detailed exposition can be found in [4]. Consider the family of Z trans-
forms fHi(z); i = 0; 1; : : : g, where each member of the family is being iden-
ti�ed by its index i. The family may contain a �nite or in�nite number of
members. For instance, we can think of a family of lowpass digital �lters
of a �xed order with varying group delay characteristics. The formal power
series

G(x) =
X
i�0

Hi(z)x
i (1)

is de�ned to be the �lter-generating function for the family. In the case that
a closed-form rational representation for G(x) exists, we can write

G(x) =

PP

i=0Ai(z)x
i

1�
PQ

i=0Bi(z)xi
: (2)

The rational functions Ai(z) and Bi(z) may be viewed as the coeÆcients of
a discrete-time system whose transfer function is G(x) and has x as its delay
operator. Such system is called a �lter-generating system for the family
fHi(z)g.

If the �lter-generating system is excited by an impulse signal under
the condition of zero initial states, then the ith sample g(i) of the system
impulse response equals Hi(z), i.e., g(i) = Hi(z), where g(i) denotes the ith
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impulse response sample of the system G(x). Thus the transfer functions of
the entire members of the family fHi(z)g are obtained.

Using the well-known recursive structure for realization of IIR systems,
the �lter-generating system (2) may be realized as a recursive system as
shown in [4]. The system can be used for three di�erent purposes. First,
to compute the transfer functions of the members Hi(z) successively by
applying the impulse sequence

Æ(n) = f1; 0; 0; : : : g; (3)

and observing the output signals that are rational functions in z. Here
G(x) is considered to be a 1-D transfer function with coeÆcients that are
rational functions of z. Second, we can use it to obtain the convolution of
a 1-D signal X(z) and the ith member of the family using the temporal
realization approach detailed in [4]. Third, it is possible to obtain a spatio-
temporal realization in the form of a modular structure that can implement
an arbitrary member of the family [4].

The de�nition of �lter-generating functions can be naturally extended
to cover the family of doubly-indexed Z transforms as

G(x; y) =
X
i�0

X
j�0

Hi;j(z)x
i yj : (4)

Again if a closed-form rational expression of the form

G(x; y) =

PP

i=0

PQ

j=0Ai;j(z)x
iyj

1�
PP

i=0

PQ

j=0(i+j 6=0)
Bi;j(z)xiyj

; (5)

exists, then G(x; y) corresponds to a �lter-generating system. The coeÆ-
cients Ai;j(z) and Bi;j(z) are rational functions in z.

Why the concept of �lter-generating systems is bene�cial in developing
algorithms, architectures, and designs? The answer lies in their power to in-
tegrate all those aspects. That is, they integrate the implementation-related
properties and the design-related aspects into a single higher dimensional
transfer function. A super transfer function that tells us what the basic
design parameters of the family are. A mathematical entity that shows how
we can take advantage of the intimate relationship among the members of
the family to implement them in a modular and regular fashion. Exam-
ples of the following two chapters show that �lter-generating functions need
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not be plain rational functions of x and z. They can have more complex
forms involving convolution of polynomials, as shown in Section 3. Alter-
natively, they may even have an equivalent product-type expression that is
a cascade of low-order multidimensional systems as shown in Section 4. In
both of those cases the associating �lter-generating systems o�er the same
advantages as their plain IIR counterparts.

3. Filter-Generating System for
McClellan Transformation

A reader familiar with the so-called Chebyshev structure [7], pro-
posed for implementation of multidimensional digital �lters designed via
the method of McClellan transformation [8], may appreciate the power of
�lter-generating systems after reading this section. Here we show that the
transformation method of McClellan, the associated Chebyshev structure,
and the whole family of 2-D digital �lters designed by that approach can be
represented using a very compact �lter-generating function.

3.1 Derivation of generating function

We use the notation developed in [9]. Let

H(z) =
X

�N�n�N

h(n) zn

denote a 1-D zero-phase �lter, where h(n) = h(�n); n � 1. Then we can
write

H(z) =
X

0�n�N

a(n)
zn + z�n

2
;

where a(0) = h(0), and a(n) = 2h(n), for n � 1. Using the Chebyshev
polynomials of the �rst kind, the �lter can be expressed as

H(z) =
X

0�n�N

a(n)Tn(
z + z�1

2
):

Now let F (z1; z2) denote the zero-phase transformation function that plays
the role of mapping function. It transforms the 1-D frequency response of
H(z) to the desired 2-D characteristics. The 2-D digital �lter obtained by
applying F (z1; z2) can be expressed as

HN (z1; z2) =
X

0�n�N

a(n)Tn
�
F (z1; z2)

�
:
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Note that we used the slightly modi�ed notation HN (z1; z2) by taking the
value of N into account. This is a necessary step in order to enhance our
ability to handle �lters of any given order. Now we write

G(x) =
X
N�0

HN (z1; z2)x
N : (6)

The real power of G(x) as the �lter-generating function for the family
of 2-D �lters designed via the McClellan transformation, can be exploited if
we can �nd a closed-form expression for it. Substitution of the summation
form of HN (z1; z2) into (6) results in

G(x) =
X
N�0

X
0�n�N

a(n)Tn
�
F (z1; z2)

�
xN :

From which we have

(1� x)G(x) =a(0)

+a(1)T1
�
F (z1; z2)

�
x

+a(2)T2
�
F (z1; z2)

�
x2 + � � � ;

and thus we can write

(1� x)G(x) =
X
N�0

a(N)TN
�
F (z1; z2)

�
xN :

Now note that the right-hand side of the above expression is a power series
whose terms are the product of two independent sequences, viz., a(N) and
TN
�
F (z1; z2)

�
: Thus it is equal to the convolution of the two power series

A(x) =
X
N�0

a(N)xN ;

and
C(x) =

X
N�0

TN
�
F (z1; z2)

�
xN :

Applying the three-term recurrence formula of Chebyshev polynomials [6]

TN (F ) = 2F TN�1(F )� TN�2(F ); N = 2; 3; : : : ;

T0(F ) = 1; T1(F ) = F;
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and using the de�nition of C(x), we get

C(x) =1 + F (z1; z2)x

+
X
N�2

�
2F (z1; z2)TN�1

�
F (z1; z2)

�
� TN�2

�
F (z1; z2)

��
xN :

From the above, we can easily verify that the simple closed-form expression

C(x) =
1� F (z1; z2)x

1� 2F (z1; z2)x+ x2

is the generating function for the Chebyshev polynomials of the �rst kind.
Consequently, the overall generating function G(x) becomes

G(x) =

1� F (z1; z2)x

1� 2F (z1; z2)x+ x2
� A(x)

1� x
: (7)

Unlike the generating functions derived so far by the authors, the above
expression is not a plain rational function. We will shortly see that this will
not a�ect its usefulness.

3.2 Structure

A spatio-temporal implementation of (7) is developed here. Consider
the 1-D impulse signal Æ(nx), where nx are indices along the direction as-
sociated with x. The impulse response of G(x) can be computed by the
following four steps.

1. Obtain the impulse response of C(x), denoted y1(nx), using y1(nx) =
2F (z1; z2)y1(nx� 1)� y1(nx� 2)+ Æ(nx)�F (z1; z2)Æ(nx� 1): The �rst
two values of y1(nx) are y1(0) = 1; y1(1) = F (z1; z2): For nx � 2
we have y1(nx) = 2F (z1; z2) y1(nx � 1)� y1(nx � 2):

2. Compute y2(nx) = y1(nx) a(nx). This is equal to the impulse response
of C(x) ? A(x):

3. To get the overall impulse response, the signal y2(nx) is fed to the system
with transfer function 1=(1 � x). This results in y3(nx) that is formed
according to the recurrence y3(nx) = y3(nx � 1) + y2(nx).

A signal ow-graph for the structure generated by G(x) with outputs
up to nx = 4 is given in Fig. 2. This structure is identical to what is called
the Chebyshev structure in the literature [7], [9].
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F(z1,z2) +2F(z1,z2) +2F(z1,z2) +2F(z1,z2)

-1 -1

-1

y1(0) y1(1) y1(2) y1(3) y1(4)

y2(0) y2(1) y2(2) y2(3) y2(4)

a(0) a(1) a(2) a(3) a(4)

+ + + +

y3(0) y3(1) y3(2) y3(3) y3(4)

Fig. 2.The Chebyshev structure generated from the �lter-
generating system (7) for the McClellan transformation.

4. Filter-Generating System for
Hadamard Transform

This section introduces another �eld of application for �lter-generating
systems. In multirate signal processing it is known that the so-called block
orthogonal transforms are in fact multirate �lter banks with �lters that have
the same order N as the rate conversion factor. A number of researchers have
investigated this connection, and we know that the celebrated Sylvester-type
Hadamard transform can be implemented using a tree-structured �lter bank
with only two types of order-1 digital �lters, namely, H0(z) = 1 + z�1, and
H1(z) = �1 + z�1 on its branches. So there is a highly regular �lter bank
for this block orthogonal transform that can be extended to any desirable
order in a straight-forward manner. See Fig. 3 for an example of such tree-
structured �lter bank.

4.1 Derivation of generating function

Our aim here is to show that the generating system approach yields very
interesting results on the Sylvester-type Hadamard transform that enhance
our current knowledge, and open up new implementation possibilities. Note
that the Hadamard transform considered in this paper is also known as the
Walsh-Hadamard transform in the literature.

Let us de�ne a generating-function for the 2N th-order Hadamard trans-
form. The function should put together all 2N digital �lters of the �lter
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Figure 3. Tree-structured Hadamard �lter bank.

bank tree into a single power series. Thus we de�ne

GN (x) =
X

0�k�2N�1

Fk(z)x
k: (8)

The transfer functions Fk(z) are given by [12], [13]

Fk(z) = Hi0(z
2
0

)Hi1(z
2
1

) � � �HiN�1(z
2
N�1

); (9)

where fi0; i1; : : : ; iN�1g is the base-2 representation of integer k, i.e.,

k = i0 + 2i1 + � � �+ 2N�1iN�1:

Thus we can write

GN (x) =X
fi0;i1;::: ;iN�1g2f0;1g

Hi0(z
2
0

)Hi1(z
2
1

) � � �HiN�1(z
2
N�1

)xi0+2i1+���+2
N�1iN�1 :
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Needless to mention that there are several possible ways to extend
GN (x) to an in�nite-length power series and facilitate the derivation of an
IIR type of �lter-generating system. However our approach here is to keep
GN (x) in its present form and obtain a factored form for it. We will see that
this leads to a modular �lter-generating system that can be implemented in
the cascade form. Let us write

GN (x) =

H0(z
2
N�1

)
X

fi0;::: ;iN�2g2f0;1g

Hi0(z
2
0

)Hi1(z
2
1

) � � �HiN�2(z
2
N�2

)xi0+2i1+���+2
N�2iN�2

+ x2
N�1

H1(z
2
N�1

)
X

fi0;::: ;iN�2g2f0;1g

Hi0(z
2
0

)Hi1(z
2
1

) � � �HiN�2(z
2
N�2

)xi0+2i1+���+2
N�2iN�2 :

Thus the common summation term can be factored out as

GN (x) =
h
H0(z

2
N�1

) + x2
N�1

H1(z
2
N�1

)
i

�
X

fi0;::: ;iN�2g2f0;1g

Hi0(z
2
0

)Hi1(z
2
1

) � � �HiN�2(z
2
N�2

)xi0+2i1+���+2
N�2iN�2 :

Now, repetitive application of the above procedure results in nothing
but

GN (x) =
Y

0�k�N�1

h
H0(z

2
k

) + x2
k

H1(z
2
k

)
i
: (10)

The above is a product-form �lter-generating system for the Hadamard
transform of order 2N .

4.2 Structure

A direct implementation of (10) for N = 3 is illustrated in Fig. 4(a).
To save on the number of additions, we should move the down-sampler left
towards the input front of the structure. This can be done in the usual
manner, using the noble identities, and the result is the 2-D multirate �lter
generating system of Fig. 4(b). This is a more modular structure compared
to the one given in Fig. 4(a). It can be veri�ed that the number of arith-
metic operations per output sample for Fig. 4(b) is the same as that of a
conventional fast Hadamard transform. The structure makes repetitive use
of a single �lter pair at each stage through the multiplexing power of the
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Figure 4. Filter-generating system for Hadamard �lter bank.

delay element x. This means that in a direct special-purpose hardware im-
plementation, the number of adders may be kept to the minimum possible
number at the cost of a two-dimensional delaying mechanism.

It seems that the structure of Fig. 4(b) is equivalent to the decoder
hardware of Mariner'69 mission invented by Green at NASA Jet Propulsion
Laboratory [14]. Though this structure is not mentioned in the signal pro-
cessing literature, [14] gives a schematic of Green's fast Hadamard transform
machine, the Green machine, that may be thought of as an implementation
of the structure of Fig. 4(b). It is interesting that the technique of �lter-
generating systems can elegantly provide a system theoretic point of view
for an ingenious hardware invention.

5. Conclusion

Filter-generating functions have the power to furnish all information
needed to synthesize and implement an entire family of discrete-time sys-
tems by a single multidimensional transfer function. This formula may have
di�erent forms. The most common form is a low-order multidimensional IIR
transfer function that is the product of simple FIR and IIR transfer func-
tions. This paper provided two alternative forms. One involves convolution
of transfer functions rather than the usual products. It was shown that �lters
designed through the McClellan transformation method may be compactly
represented by this type of �lter-generating systems. Another possibility is
a generating function expressible as in�nite products of simple multidimen-
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sional transfer functions. The family of �lter banks that realize the Sylvester
type Hadamard transforms has a generating function that belongs to this
latter form.

We developed structures based on the two newly-derived �lter-genera-
ting systems. For the McClellan transformation the structure turned out to
be equivalent to the Chebyshev structure. For the Hadamard �lter banks
we conjectured that the structure is equivalent to the Green machine, a fast
Hadamard transformer that has not been mentioned in the signal processing
literature. In spite of the fact that the �lter-generating systems of this
paper are slightly di�erent from the ones developed in our previous papers,
both structures still yield cellular realizations of the �lter members through
regularly interconnected identical cells of low orders. The ability to produce
such cellular structures through a system theoretic approach is interesting
from both theoretical and practical considerations.

Some open problems include development of �lter-generating systems
for the discrete Fourier and Cosine transforms and investigation of their
relation to structures for fast implementation of the said transforms.
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