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A NEW APPROACH FOR THE SS7 LEVEL-2

STEADY-STATE PERFORMANCE ANALYSIS

Branimir M. Trenki�c

Abstract In this paper, a new approach for arrival process characterization
in the SS7 level-2 transmission protocol is presented. The SS7 level-2 protocol
messages ow enables a very good aproximation by analytical model based
on the continuous batch Markovian arrival process (BMAP). This analytical
model generalize the Poisson assumptions. On this way, accurate predictions
of message ows in the SS7 level-2 transmission protocol are achieved. Fur-
ther, we analyse the SS7 level-2 protocol by way of the BMAP/G/1 queueing
system. Using matrix analytic methods we determine actions for steady-state
occupancy level computation of the SS7 level-2 bu�ers. The stationary queue
length statistic calculation in SS7 level-2 transmission protocol at service com-
pletion times and at an arbitrary time is outlined in this paper

Key words: Transmission protocol, SS7 level-2 protocol, Markovian arrival
process, Poisson assumtion.

1. Introduction

The Common Channel Signaling (CCS) network represents the latest
step in the evolution of signaling systems for the Public Switched Tele-
phone Network (PSTN). The signaling system uses the Signaling System
No.7 (SS7), [1], protocol over its signaling links for transfer of signaling mes-
sages between exchanges, or other nodes in the telecommunications network,
served by the system. SS7 de�nes three types of messages: MSUs (message
signal units), LSSUs (link status signal units) and FISUs (�ll-in signal units).
MSUs carry application-speci�c signaling information and LSSUs carry link
status information. FISUs are transmitted when there are no MSUs and
LSSUs to transmit. Except in some circumstances, the traÆc impact of
LSSUs is negligible, and we shall ignore them.
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The Signaling System No.7 uses a layered protocol similar to the OSI
protocol. The link-level (or level-2) basic error correction method is the well-
known "go-back-N" protocol. Two bu�ers for keeping of signal units (except
FISUs) need to be sent, is de�ned in the SS7 level-2 protocol. Basically, the
protocol operates as follows: Whenever a message is sent out a communica-
tion link (from transmit bu�er, TB), it is saved in a retransmit bu�er, RB,
(Fig. 1). The message is held in this bu�er until a positive acknowledgment
(+ve ack) is received indicating that the message was correctly received on
the other end. If instead a negative acknowledgment (nack) is received then
that message and all others that were transmitted after it are retransmitted.
The retransmit bu�er is of limited size (K = 128 messages as speci�ed in
[1]) and no new transmissions can be started if the retransmit bu�er is full.

Fig. 1. An illustration of the SS7 level-2 protocol.

Accurate predictions of messages arrivals into SS7 level-2 transmit bu�er
are essential to eÆcient evaluate the SS7 level-2 protocol performance mea-
sures (for instance, waiting time or queue length distributions). The Poisson
input process (interarrival time is exponential and orderliness of arrivals)
are assumed by existing queueing models for performance evaluation of the
SS7 level-2 protocol [1], [2]. However, can be see, exactly non-exponential
interarrival time and batch (or bulk) arrivals (upon negative ack receive) are
a natural features of the SS7 level-2 messages ow.

From this reasons, I propose a new approach for the arrival process
characterization in SS7 level-2 transmission protocol, which is based on the
continuous batch Markovian arrival process (BMAP). Based on such de�ned
arrival process, the steady-state analysis of the SS7 level-2 protocol is ac-
complished. Further, a computation method for obtaining of steady-state
queue length statistics in the SS7 level-2 protocol (i.e. steady-state TB and
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RB occupancy level statistics) at MSU emission completion time and at an
arbitrary time is presented. This is done by the stationary probability ma-
trices (�) and (	) calculation. From these matrices is simple calculated the
mean values and probability distribution functions for the steady-state TB
and RB occupancy level.

2. The arrival Model De�nition

2.1 Mathematical model

Let N(t) be the number of messages in transmit bu�er up to time t and
J(t) be the number of messages in retransmit bu�er at time t. Obviously,
N(t) is the counting variable and J(t) is the phase variable, on the state
space f(i; j) : i � 0; 0 � j � Kg. Then the batch Markovian arrival process
(BMAP) fN(t); J(t) : t � 0g is a 2-dimensional Markov process whose
generator matrix is given by

Q =

2
66664

D0 D1 D2 D3 : : : DK : : :
D0 D1 D2 : : : DK�1 : : :

D0 D1 : : : DK�2 : : :
D0 : : : DK�3 : : :

...
...

...
...

. . .
...

...

3
77775

(empty entries shall represent the zero matrix).

Dk, k � 0, are K �K non-negative matrices, and D0 has negative diagonal
elements and non-negative o�-diagonal elements. Dk basically represents
the transitions among the phases when the batch of size k arrives. The
generator of the underlying Markov process can be given by

D =
KX
i=0

Di (1)

The matrix D0 governs the transitions at the same level, between phases
without any arrival in the level-2 transmit bu�er, while the Dk governs the
transitions between the phases (the number of messages in retransmit bu�er)
of level i and level (i+ k) due to the arrival of batch of size k. That BMAP
has the following parametre matrices:
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D0 =
2
6666666664

�[� + Æ(0)] Æ(0) 0 : : : 0
p(1) �[a(1) + Æ(1) + �] Æ(1) : : : 0
...

...
. . .

...
...

0 : : : �[a(k) + Æ(k) + �] : : : 0
...

...
. . .

...
...

0 0 : : : p(K) �[a(K) + �]

3
7777777775

and,

D1 =

2
6664

� 0 : : : 0
n(1) � : : : 0
...

...
. . .

...
0 0 : : : �

3
7775 ; Dk =

2
66666664

0 0 : : : 0
...

...
. . .

...
n(k) 0 : : : 0
...

...
. . .

...
0 0 : : : 0

3
77777775
 kth row(2 � k � K)

where � is external arrival rate of MSU messages into level-2 transmit bu�er,
a(i) is ack rate when i messages are in level-2 retransmit bu�er, p(i) is
positive ack rate when i messages are in level-2 retransmit bu�er, n(i) is
negative ack rate when i messages are in level-2 retransmit bu�er and Æ(i)
is increment rate of the number of messages are in level-2 retransmit bu�er.

2.2 Computation of entries in the parametre matrices

[D0]i;i�1 = p(i) and [Dk]i;0 = n(i) (1 � i; k � K). Given a ack rate
when i messages are in level-2 retransmit bu�er (a(i)), the corresponding
positive ack rate can be obtained as p(i) = (1�pm) �a(i) where pm denotes
the message error ratio. Similary, we get n(i) = pm �a(i). A simple way to
compute a(i) is by using Norton's theorem. That is, we consider a closed
queueing network of two stations. The �rst station representing the round-
trip propagation delay (tL). tL = 2�Tp, where Tp is data channel propagation
time, [1].

The second station representing the receive time (tR) plus the emis-
sion time at the receiving end of the CCS No7 signaling link. Here, the
receive time is concerned with only the level-2 functionality (CRC checks
and ack/nack generator) and will take less than 1ms per message, [2]. In
SS7, the acks/nacks are embedded in regular messages and their processing
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causes negligible overhead. SS7 also allows for block acknowledgement of
messages, but its e�ect is only to improve performance and, hence, can be
ignored in our analysis. We shall assume the second station to be a single
server with exponentially distributed service times. Then, a(i) is simply
the throughput of this network.

Let is i messages in that closed network and r(i) is expected "round-trip
time" of a message between visits to the same station. r(i) = w1(i)+w2(i),
where are w1(i) and w2(i) mean waiting time at �rst and second stations
respectively.

w1(i) = t�1L and w2(i) = d2(i) + (tR + �sR)
�1 (2)

where d2(i) is denote the expected delay of an arrival at second station and
�sR is the mean emission time at the receiving end of the signaling link. From
Norton's theorem, [3], we also have d2(i) = L2(i�1)=(tR+�sR) (where L2(i)
is the expected number of messages at second station). The throughput,
respectively, ack rate when i messages are in level-2 retransmit bu�er is

a(i) = i=r(i) (3)

and of course, L2(i) = a(i)w2(i). This relation enables to de�ne the recur-
sion procedure for a(i) calculation.

[D0]i;i+1 = Æ(i) is the transition rate from phase i (i messages are in
level-2 retransmit ba�er) to phase i + 1 without any new arrival in level-2
transmit bu�er (named, the retransmit bu�er increment rate). This rate is
equal p(i) � �, where is � the mean emission (service) rate (at the sending
end) and p(i) is probability of non-empty transmit bu�er when i messages
are pending in level-2 retransmit bu�er. This probability is equal the efective
link load, p(i) = �e(i) = �e(i)=�, (0 � i � K), when �e(i) � �, or p(i) = 1
for �e(i) > �. Then,

Æ(i) =

�
�; if i = 0

min(�e(i); �); otherwise
(4)

E�ective arrival rate into level-2 transmit bu�er we get from a simple ow
balance:

�e(i) = �+ n(i)(1 + r(i)�e(i)) (5)

The number of messages put into the level-2 transmit bu�er when a nack
arrives (when i messages are pending in level-2 retransmit bu�er) is the mes-
sage in question plus the messages transmitted during its acknowledgemen
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delay (r(i)). This gives the 1 + r(i)�e(i) factor. With this, computation
process of all non-null elements of the Dk (k � 0) matrices is completed.

Since, the matrix D in (1) is an irreducible generator matrix, it has got
a stationary vector �, which is the unique solutions to the following set of
equations

�D = 0; �e = 1

where e is a column vector of 1's. The vector d whose j-th component is the
conditional arrival rate into level-2 transmit bu�er, which starts with the
arrival process in phase when j messages are in level-2 retransmit bu�er, is
given by

d =

KX
k=1

kDke

Averaging over the phases, the e�ective (or, fundamental) arrival rate, �eff
can be given by,

��1eff = �d (6)

The results obtained using (6) for e�ective link load (�eff = �eff=�), are al-
most the same as results obtained according to e�ective link load calculation
method from [4].

3. The BMAP/G/1 Analysis of
the SS7 Level-2 Protocol

3.1 The embedded Markov process

If we observe fX(t); J(t) : t � 0g at MSU emission completion times
T� (� � 0), only, we obtain a discrete time-homogeneous Markov chain with
transition probability matrix

~P (x) =

2
666664

~B0(x) ~B1(x) ~B2(x) ~B3(x) : : :
~A0(x) ~A1(x) ~A2(x) ~A3(x) : : :

~A0(x) ~A1(x) ~A2(x) : : :
~A0(x) ~A1(x) : : :

...
...

...
...

. . .
...

...

3
777775

(7)

where ~An(x) and ~Bn(x) (n � 0) are the K �K matrices of mass functions
de�ned by

[ ~An(x)]ij = PfN(T�+1 � T�) = n; J(T�+1) = j;

T�+1 � T� � xjX(T�) > 0; J(T�) = ig
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and

[ ~Bn(x)]ij = PfN(T�+1 � T�) = n+ 1; J(T�+1) = j;

T�+1 � T� � xjX(T�) = 0; J(T� ) = ig:

Futher, we de�ne the stationary shape of these matrices An = ~An(1), Bn =
~Bn(1) (n � 0) and P = ~P (1). Beside of these matrices, nacessary is
to determine one more matrix. Namely, the fundamental matrix G plays
the key role in determining the steady-state distribution in the embedded
Markov chain given by (7). In the context of the our queue problem, matrix
G governs the number transmited MSUs during, and the duration of, the
TB non-empty period.

3.2 Remarks on the matrices An, Bn and G computation

(a) The message service (emission) time distribution depends on the link
capacity (C, which is a constant) and the message length distribution. In
reality, we can �nd the service time distribution (H(:)) by observing and
measuring the H(:) as a set of p(k) and d(k)=C, (1 � k � Nmsu). d(k) is
the MSU length of type k MSU and p(k) is the probability of observing a
MSU of type k. Nmsu is the number of MSU types.

(b) The matrix G computation is based on the key theorem for the funda-
mental period in the BMAP/G/1 queue, [5], which readily implies that

G =

Z
1

0

eD[G]xdH(x) (8)

in this relation D[G] =
P
1

j=0DjG
j and may be computed using Horner's

algorithm, [6]. Then from (8) and the remark (a), we see that G satis�es

G =

NmsuX
i=1

p(i)eD[G]d(i)=C (9)

In this case, any routine which eÆciently computes the matrix exponential
can be used for the iteration implied by (9), starting with G0 = 0.

(c) An eÆcient algorithm for computing the An's and Bn's may be found
in [7]. This algorithm involves the numerical integration of the some scalar
quantities. From the remark (a) numerical integrations may be avoided.
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4. The Steady-State Occupancy Level
of SS7 Level-2 Bu�ers

4.1 Probability statistics at message

emission completion times

The distribution of TB and RB occupancy level at MSU emission com-
pletion times is the stationary distribution of the discrete Markov chain
fX(T� ); J(T�) : � � 0g. We are de�ne [�]i;j as the steady-state probability
that number of MSUs in TB is equal i and number of MSUs in RB is equal
j at MSU emission completion times, i.e.

[�]i;j = lim
�!1

PfX(T� ) = i; J(T� ) = jjX(T0) = l; J(T0) = kg

for all i; l � 0 and j; k = 0; 1; :::;K. The entries of � are calculate by
following recursion

[�]i;� =

�
[�]0;� �Bi +

i�1X
k=1

[�]k;� �Ai+1�k

�
(I � �A1)

�1

where [�]i;� (i � 1) denote ith row of the � matrix. Matrices �Av =P
1

i=v AiG
i�v and �Bv =

P
1

i=v BiG
i�v (v � 0) can be implemented eÆ-

ciently by choosing a large index k, and setting �Ak and �Bk = 0. The
other required matrices can be computed by following backward recursions:
�Ai = Ai + �Ai+1G and �Bi = Bi + �Bi+1G for i = k � 1; k � 2; :::; 0.

So it only remains to compute the row [�]0;�. First we note that [�]0;j
is reciprocal of the mean recurrence time of the state (0; j) in the Markov
chain (7). Now we consider our Markov chain at its visit to level 0 only, i.e.
we exclude the busy periods. So we obtain a discrete Markov chain, whose
transition probability matrix will be denoted by S and a probability vector
s such that sS = s. Now, the vector s�, whose jth component gives the
mean number of transitions between two consecutive visits to level 0, if the
last state visited in level 0 was (0; j). Therefore sjs

�

j=si, is the mean number
of transitions between successive visits to state i given that it visits state
j in between. The steady-state probability of the state j can be given by
[�]0;j = sj=ss

�, therefore the row [�]0;� can be given by

[�]0;� =
s

ss�



B.Trenki�c: A new approach for the SS7 level-2 steadi-state ... 325

We only need to determine the matrix S and the vector s� (for this see, e.g.,
[6]).

From the matrix � by simple computations we get folloving steady-state
statistics at message emission completion times:

(a) the mean value of the TB occupancy level (in numbers of MSUs),

E(X) =
P
1

i=0 i
PK

j=0[�]i;j ,

(b) the mean value of the RB occupancy level, E(J) =
PK

j=0 j
P
1

i=0[�]i;j ,

(c) the mean value of the TB+RB occupancy level, E(X + J) =P
1

i=0

PK
j=0(i+ j)[�]i;j .

On the same way, we are obtained corresponding steady-state probabil-
ity distributions

FX(x) =

xX
i=0

KX
j=0

[�]i;j ; FJ (x) =

1X
i=0

xX
j=0

[�]i;j ; FX+J(x) =

xX
i=0

x�iX
j=0

[�]i;j

4.2 Probability statistics at an arbitrary time

The probability distribution of TB and RB occupancy level at an arbi-
trary time is the stationary distribution of the Markov process fX(t); J(t) :
t � 0g. We are de�ne [	]i;j as the steady-state probability that number of
MSUs in TB is equal i and number of MSUs in RB is equal j at an arbitrary
time, i.e.

[	]i;j = lim
t!1

PfX(t) = i; J(t) = jjX(0) = l; J(0) = kg

for all i; l � 0 and j; k = 0; 1; :::;K. The components (rows) [	]i;� (i � 0)
of 	 can be obtained in terms of the sequence f[�]i;�g, by applying the key
renewal theorem [5]. The component [	]0;� is given by

[	]0;� = ���1eff [�]0;�D
�1
0

and [	]0;�e = 1 � �, as expected. For i � 0 the component [	]i;� is given
by

[	]i+1;� =

� iX
j=0

[	]j;�Di+1�j � ��1eff ([�]i;� � [�]i+1;�)

�
(�D�10 )

From the matrix 	, on the same way as above , can be obtained the steady-
state statistics of the SS7 bu�ers occupancy level.
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5. Numerical Example

Calculation of the stationary occupancy level of the SS7 level-2 bu�ers
(TB and RB) is done for SS7 64kb/s link, with basic error correction method.
Signaling traÆc is characterized by two types of MSU (50% MSUs of 18
octets length and 50% MSUs of 54 octets length). External arrival rate of
these MSUs into level-2 transmit bu�er is � = 80mess:=s. Signaling loop
propagation time is tL = 30ms. Fig. 2 shows the mean occupancy level (in
number of MSUs) of the transmit bu�er and the retransmit bu�er against
the signal unit error rate at MSU departure times. Fig. 3 shows the steady-
state probability distribution functions of X and X + J versus the signal
unit error rate at MSU departure times. Comparison of obtained results
(calculated from steady-state probabilities at MSUs departure times and an
arbitrary times) is presented in Fig. 4. It can be seen that obtained results
for entire stationary number of messages in the SS7 level-2 protocol, (X+J),
are very closely. However, exist certain a di�erence in distribution of these
MSUs between SS7 bu�ers.

Fig. 2. Mean occupations of the level-2 bu�ers (in number of MSUs)
against the signal unit error rate.
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Fig. 3. Probability distribution functions of X and X + J
versus the signal unit error rate.

Fig. 4. The mean occupancy level of the SS7 level-2 bu�ers against
the signal unit error rate, calculated at MSUs departure times (DT)
and at an arrbitrary times (AT).
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6. Conclusions

The arrival process de�ned as BMAP enables a very good aproximation
of SS7 level-2 message ows (into/from) transmit and retransmit bu�ers.
Note that, non-exponential interarrival time and batch (or bulk) arrivals
(upon negative ack receive) are a natural features of SS7 level-2 function.

The arrival process de�ned on this way enables additionaly simpli�ca-
tion of a procedure for SS7 level-2 protocol performance evaluation. When
only the moments of the queue length are needed, then computation of the
matrix G is suÆcient. Note that this approach does not require the numer-
ical evaluation and storage of the matrices An, [2], (M/G/1 approach). In
this paper we developed analytic model that describe the steady-state queue
length performance in the SS7 level-2 protocol. This model (BMAP/G/1)
enables accurate predictions of the message ows on the SS7 level-2 proto-
col, and on that account the developed calculation method is very applicable
in reality. Finally, the presented analytic model and obtained results may
be used in analysis of the congestion control scheme in the signaling sistem
No.7.
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