
FACTA UNIVERSITATIS (NI�S)
Series: Electronics and Energetics vol. 13, No.3, December 2000, 297-315

PIPELINED PROCESSOR FOR PARALLEL

INTERPRETATION

Veljko Malba�sa and Mark Manwaring

Abstract The principles and design of a pipelined processor architecture

for parallel interpretation of high-level machine languages is presented. A

new instruction encoding method, that facilitates the design of pipelines, is

used to design the instruction sets of the controller, memory, and execution

units. Performance pro�les of seven benchmark programs, obtained by using

a cycle-level simulator, show the speedup of about two relative to equivalent

processor for serial interpretation.

Key words: Pipelined processor architecture, high-level machine languages,

minimally synchronized architecture.

1. Introduction

The goal of the parallel interpretation project is to overcome two seri-
ous problems imposed by traditional computer architectures: (i) ineÆcient
support for a complex interpretation phase and (ii) classic interpretation
techniques, based on a sequential fetch-execute model, are not very suitable
for interpreting higher level, or abstract, machine languages, because of the
phenomenon of "interpretive overhead", [4].

An innovative architecture for parallel interpretation of high-level ma-
chine languages has been described in [1]. This type of the architecture
shares some commonality with a class of decoupled computer architectures,
[3]. In the proposed architecture the interpretation process is decomposed
into concurrent processes which are executed in parallel on a number of
specialized processors which are connected by fast queues. The speedup re-
sulting from the parallel operation is designed to counterbalance the penalty

Manuscript eingegangen April. 18, 2000.

The authors are with Schol of Electrical Engineering and Computer Scinece, Wash-

ington State University, Pullmann, WA, 99164-2752.

297



298 Facta Universitatis ser.: Elec. and Energ., vol.13, No.3 December 2000

of interpretive overhead. This is a form of user transparent implicit paral-
lelism. Details of the described architecture, called Minimally Synchronized
Architecture (MSA) are given in the references [1], [5].

The performance of an MSA can be enhanced by incorporating other
forms of parallelism, such as pipelining. In the paper we deal with the design
and performance of a pipelined version of an MSA. A cycle level simulator for
the pipelined MSA has been implemented. The simulator executes programs
written in the machine code. Various architectural features, component
speeds and queue lengths can be speci�ed in a parameter �le which is read
by the simulator. The simulator generates various sets of data characterizing
the execution process. These includes total parallel and serial execution
time, execution time of each component, types and number of pipeline stalls,
address traces et cetera. The estimate of serial time is based on the execution
time of the same program on an equivalent serial machine. The benchmark
programs that are run on the simulator are chosen to represent di�erent
types of loads. The performance measurements are presented and compared
with equivalent serial machine.

The paper is organized in the following way. In the next section we
analyze the problems imposed by pipelining to establish the background
for the design of the pipelined MSA. An instruction encoding scheme, called
Distributed Encoding Scheme, that strives to minimize structural complexity
of the MSA instruction set while retaining the compactness of a complex
instruction set is presented. After that we give some of the details of the
pipelined MSA and the instruction set. At the end of the paper some of
the performance measurement results obtained by running representative
benchmark programs on the implemented cycle level simulator are presented
and discussed.

2. Pipelining

Pipelining increases computer performance by overlapping the execu-
tion of multiple instructions, [2]. This feat is accomplished by dicing each
instruction into basic operations and dedicating individual processing units
(called stages) to each segment. The stages are connected with each other,
usually via a staging register, and for a pipe. The number of stages present
in a pipeline is called the depth of the pipeline. Assuming that the execution
time in each pipeline stage is equal, the lower bound of the execution time of
each instruction in the pipelined unit, called the ideal execution time is equal
to the time per instruction on equivalent non-pipelined machine divided by
the number of the pipe stages.



V. Malba�sa and M. Manwaring: Pipelined processor architecture ... 299

Hazards are pathological conditions in the operation of a pipeline where
an instruction is prevented from executing at its designated clock cycle.
Three kinds of hazards can be identi�ed: Data, Structural, and Control
hazards.

A data hazard occurs whenever some data object within the computer
(e.g., register, memory locations, ag) is accessed or modi�ed by two separate
instructions that are close enough for their execution to be overlapped in
the pipeline. Let the domain Di of an instruction i be the set of all objects
(registers, memory locations, ags, etc.) whose contents may a�ect the
execution of the instruction i, and range Ri be the set of all objects whose
contents may be modi�ed by the execution of the instruction I. Three types
of data hazards are distinguished between an instruction i and a successive
instruction i+ 1.

� RAW (Read-After-Write) hazard is possible is Ri

T
Di+1 6= ;. RAW

hazards occurs when the instruction i + 1 attempts to read an object
which is modi�ed by the instruction i before the modi�cation is com-
plete.

� WAR (Write-After-Read) hazard is possible if Di

T
Ri+1 6= ;. WAR

hazard is possible if instruction i + 1 modi�es some object before it is
read by the instruction i.

� WAW (Write-After-Write) hazard is possible if Ri

T
Ri+1 6= ;. This

type of hazard occurs when both instructions i and i + 1 attempt to
modify the same object but the instruction i's modi�cation occurs after
that of the j's.

The simplest technique to resolve the data hazards is to "stall" the
pipeline if a hazard is found, i.e. if the instruction i + 1 is found to have
a hazard possibility with a previously issued instruction i then the issuing
of i + 1, and all subsequent instructions is halted until such time when the
hazard condition ceases to exist. A more ambitious solution is to stall the
instruction i + 1, but let subsequent instructions i+ 2; i + 3; � � � proceed, if
they are free of potential hazards. A solution speci�c to RAW hazards, is
to directly forward the data produced by the instruction i, which is required
by the instruction i+ 1, to the instruction i+ 1 before the execution of the
instruction i is complete. This is called forwarding or short circuiting and
requires extra hardware for its implementation.

A structural hazard might rise in a situation where two or more
instructions compete for the same hardware resources at a given clock cycle.
For example, at a given clock cycle, the instruction i might want to write a



300 Facta Universitatis ser.: Elec. and Energ., vol.13, No.3 December 2000

result to the register bank, while the instruction i + 1 might need to read
the contents of a register. The usual solution is to let on of the competing
instruction proceed while stalling the others. Depending on the frequency
of a particular hazard, the designer might want to duplicate the resource of
contention.

The control hazards happen in the presence of branch and jump in-
structions that disrupt the sequential ow of the instruction execution. The
problem is that the target of a branch instruction become available only af-
ter the instruction is well into the pipeline. At this point several subsequent
instructions have also been issued to the pipeline under the assumptions of
linearity of execution. However, if the branch is now taken, this would re-
quire that the pipeline be "ushed" and the e�ects (if any) of the instructions
already in the pipe, be undone, before the execution can be resumed from the
new address. The simplest solution to this problem is to freeze the pipeline
as soon as a branch or jump instruction is detected, which usually occurs
during the decode stage. A more sophisticated technique involve predicting
the outcome of the branch instruction and continuing the execution from a
point based on the prediction. In case of a false prediction the pipeline has
to be ushed.

3. Pipelined MSA

Pipelined and superscalar architectures were both conceived to augment
processor performance by exploiting implicit parallelism. The nature of the
parallelism that each exploits is, however, very di�erent. Pipelining o�ers
an economical way to realize the temporal parallelism, that is inherent in
the process of instruction execution, by segmenting the process into consec-
utive subprocesses. Superscalar architectures, on the other hand, are said
to exploit spatial parallelism, i.e., instruction level parallelism. These two
orthogonal approaches can also be combined in the same processor to pro-
vide a higher degree of potential parallelism. An example which carries this
to the extreme is the SIMP processor, [48] and [58], which consists of four
identical instruction pipelines, each of which consists of �ve pipe stages thus
enabling the processor, in theory, to attain an overall speedup of 20.

The parallelism exploited by an MSA is very di�erent in avor from that
of temporal or spatial parallelism, and can be termed structural parallelism.
It exploits the parallelism inherent in the structure of the interpretation
process. The performance of an MSA architecture can also be enhanced by
incorporating other forms of parallelism within its architecture: superscalar
MSA or pipelined MSA. Furthermore, for various reasons, pipelined MSAs



V. Malba�sa and M. Manwaring: Pipelined processor architecture ... 301

are much easier to implement than pipelined superscalar architecture. In
a pipelined superscalar architecture, the detection of pipeline hazards are
made more complicated, and their e�ect on processor performance is further
exacerbated by multiple instruction issue and out of order execution. This
is specially true for control hazards, which has been blamed for the poor
performance of the SIMP processor.

The combination of structural and temporal parallelism in pipelined
MSA is more benign because in machines that realize structural parallelism,
the logical ordering of instructions is violated during execution. Structural
and data hazards are not compounded by the presence of multiple pipelined
units because (i) each pipeline is separate physical entity and do not share
any common resources and(ii) the source and destinations of each pipeline
are logically separated. Control hazards still impose a hefty penalty on the
performance by introducing pipeline stalls, but this can be alleviated by a
combination of software (delayed branches, software branch prediction etc.)
and hardware (speculative execution, boosted execution etc) solutions.

The Table 1 presents the pipeline stages of the controller, memory, and
the execution units of an MSA.

Table 1

Controller pipeline Memory pipeline Execution unit pipeline

Instruction fetch Instruction fetch Instruction fetch

Insstruction decode Instruction decode Instruction decode

Instruction formation Address generation Execute

Send instruction Cache address Send result

End of operation

Note that in all of the three pipelines the range and domain of the in-
structions do not overlap. The following table gives the domain and range
objects for the three units. In the table IC stands for Instruction Cache,
MCQ for Memory to Controller Queue, CMQ for Controller to Memory
Queue, CXQ for Controller fo Execution unit Queue, DC for Data Cache,
XMQ for Execution unit to Memory Queue, and MXQ for Memory to Exe-
cution unit Queue, see Fig. 1 and Fig. 1, [5].

Table 2

Pipeline Domain Range

Controller IC, MCQ CMQ, CXQ

Memory DC, CMQ, XMQ MXQ, MCQ, DC

Execution CXQ, MXQ XMQ



302 Facta Universitatis ser.: Elec. and Energ., vol.13, No.3 December 2000

The consequences of the logical and physical separation of the range and
domain structures are profound, because it implies that there are no data
hazards in these pipelines, and thus they do not su�er from the crippling
e�ect of this type of hazards.

A quick inspection of the pipeline also reveals that these pipelines are
devoid of structural hazards. The controller unit accesses the instruction
cache only during one stage in the pipeline. Similarly, the memory unit has
a single read/write access to the data cache at a given clock cycle. Memory
accesses therefore can not cause structural hazards. At a given clock cycle
the controller unit can perform at most three write operations, on to the
memory queue and two writes to the execution queue. The memory queue is
provided with one write and one read port, while the execution queue is pro-
vided with two write and one read port. This precludes any possible struc-
tural hazard resulting from access to the resources. Most multiple-pipelined
superscalar architectures, in contrast, are characterized by an aggravation
in the complexity of data and structural hazards when compared to their
scalar counterparts.

Control hazards, however, are still present in this architecture, although
their e�ect on performance is less pronounced when compared to superscalar
architectures. The two controller instruction that generate this type of haz-
ard in this architecture are the GOTO instruction, which denote an uncon-
ditional transfer of control, and the LOOP instruction wich is a conditional
transfer instruction and whose outcome is predicated by the result of a pre-
viously issued relational instruction. This relational instruction is evaluated
by the memory unit and its result is passed back to the controller unit via the
memory-to-controller queue MCQ. The GOTO instruction can be detected
in the ID stage of the pipeline and hence only the next instruction (which
is in the IF stage) needs to be ushed from the pipeline. This introduces a
pipe stall of one clock cycle. The e�ect of the LOOP instruction is more
severe. The instruction can be detected as early as the ID stage, however
the resolution of the branch is dependent on the evaluation of the relational
instruction in the memory unit, and in the case when the relational instruc-
tion immediately precedes the branch instruction the evaluation can take
from six to thousands of clock cycles (in case of a data cache read miss in
the memory unit). These harsh e�ects can, however, be largely mitigated
by code optimization techniques like delayed branch and loop unrolling. In
most cases the branch penalty can be reduced to 1 cycle. A further source
of branch penalty are the CALL and RETN instructions. In each case the
branch penalty is exactly one clock cycle.



V. Malba�sa and M. Manwaring: Pipelined processor architecture ... 303

The preceding discussion substantiates the claim that pipelined MSAs
are signi�cantly less prone to pipeline hazards than superscalar architectures.

4. Instruction Set Complexity and Pipeline Design

Another important aspect of pipeline design is the e�ect of the structural
complexity of an instruction set on pipeline performance. An instruction en-
coding scheme, called Distributed Encoding Scheme (DES), that strives to
minimize structural complexity of MSA instruction set while retaining the
compactness of a complex instruction set is presented in this section. The
central idea in DES is to decompose a complex instruction into several con-
stituent parts, each of which encodes several operations from the operation
set of the complete instruction, and is complex enough to fully utilize the
resources of the pipeline. This structural unit of a complex instruction is
called an instruction parcel. In DES, unlike conventional instruction formats
where the opcode that identi�es the functionality of the instruction is usually
con�ned to the leading bytes (one or two) of the encoding, the information
is distributed among the constituent instruction parcels.

The instruction parcels can be di�erentiated into two categories, which
are called leading and dependent parcels. The leading instruction parcel is
the �rst instruction parcel in a multi-parcel instruction. Subsequent parcels
in the instruction fall in the category of dependent parcels. A single bit in
the encoding di�erentiates between the two types. The encoding of a lead-
ing instruction parcel consists of the two �elds, the major opcode �eld that
identi�es the instruction, and when decoded, provides the relevant semantic
information that determines the operations to be performed on the operands
speci�ed in the second operand �eld. A dependent instruction parcel also
consists of two �elds. The leading �eld is called the minor opcode �eld,
which is usually smaller that the major opcode �eld, and when combined
with a speci�ed segment of the corresponding major opcode �eld, provides
the information required to process the operands that are provided in the
operand �elds that follow. The leading and dependent instructions have a
�xed �eld encoding which facilitates their decoding.

The DES concept is illustrated by an example design of the instruction
PEXPR, that speci�es a polish expression, and that is the most complex
instruction in the MSA instruction set. The expression can be arbitrary long,
and can consist of an arbitrary combination of operands and operators in
arbitrary order. It is assumed that 4 bits are required to specify an operator
and that 24 bits are required to specify a literal values or the address of
an operand. The major opcode is speci�ed by 8 bits, the last four bits of



304 Facta Universitatis ser.: Elec. and Energ., vol.13, No.3 December 2000

which is combined with the 4 bit minor opcode to yield the working opcode
for dependent parcels. the instruction parcel is 32 bit long, which is the
usual length for modern RISC type instructions. The instruction parcels
for PEXPR that can be formulated under these constraints are given in the
Table 3, where for each instruction the mnemonic name and the name and
type of operand �elds are given.

Table 3

Opcode Field 1 Field 2 Description

PSWR VAR leading parcel, variable operand

PSVI @VAR leading parcel, indirect var. operand

PSVL VAL leading parcel, literal operand

PAVR BASE leading parcel, structured variable

POVL OPER VAL dependent parcel, operator and literal

PVLO VAL OPER dependent parcel, literal and operator

POVR OPER VAR dependent parcel, operator and operand

PVRO VAR OPER dependent parcel, variable and operator

POVI OPER @VAR dep. parcel, operator and indirect operand

PVAL VAL dependent parcel, literal operand

PVAR VAR dependent parcel, variable operand

PVRI @VAR dependent parcel, indirect variable

POPP OPER OPER dependent parcel, two operators

PAOD VAL dep. parcel, literal o�set for string operand

PAOV VAR dep. parcel, variable o�set for string operand

Note that the �rst four are leading instruction parcels while the rest
belongs to the dependent category. A polish expression with be encoded
as a combination of these parcels with the proviso that the encoding must
start with on of the four possible leading parcels. Note that while a certain
amount of independence can be ascribed to a parcel, it is not an independent
instruction because its import is only valid in the context of the complete
instruction of which it is a part.

As an example, the encoding of the representative polish expression (A
+ B) ?C?D?E in the compact PEXPR for is given as PEXPR AB+C?DE??
and in the DES format as:

PSV R A

PV RO B +

PV RO C +

PV AR D

PV AR E

POPP + +



V. Malba�sa and M. Manwaring: Pipelined processor architecture ... 305

If the size of the variables is 24 bits, and size of the operators is 4 bits,
then the code size for the compact PEXPR form is 24 � 5 + 4 � 4 = 144 bits,
and the corresponding size for DES form requires 192 bits, that is about 32%
more than the compact form. This overhead in code size is quite acceptable
when compared to the more that twofold increase in RISC code size over
that of CISC code size. More importantly, the performance of the pipeline
has not been compromised because each instruction parcel exhibits the same
structural simplicity that distinguishes RISC type instructions.

5. Pipelined MSA Architecture

The architecture details of the controller and memory unit of the pro-
posed pipelined MSA are presented in the Fig. 1 and Fig. 2, respectively.

Fig. 1. The pipelined controller unit of the MSA

It is important to note that all of the three processors, the controller,
the memory, and the execution unit, are pipelined. The instruction set
architecture of each unit was designed in accordance with the DES concept.



306 Facta Universitatis ser.: Elec. and Energ., vol.13, No.3 December 2000

Fig. 2. The pipelined memory unit of the MSA

5.1 Controller unit

The controller unit, Fig. 1, communicates with the memory and execu-
tion processor via the CMQ and CEQ queues, respectively, and receives the
results of relational operations from the memory unit through the MCQ. At
each cycle a 32-bit instruction parcel is brought in from the instruction cache
to the instruction register (IR). If this is a leading parcels, the �rst byte of
the instruction, i.e. the opcode, is copied over to the decode register. In the
case of a dependent parcel, only the �rst four bits are copied on to the last
four bit of the DR. The contents of the DR is decoded by the PLA. When de-
coded, a controller instruction produces instructions for the memory and the
execution units. The maximum number of memory and execution instruc-
tions that a controller instruction can be decomposed into is three, which
includes on address unit instruction and two execution unit instructions.
These are written into the address instruction register (ADREG) and the
two execution instruction registers (EXREG1 and EXREG2), respectively.

The instructions are formed in the following fashion. The output of the
PLA consists of up to a maximum of three �elds, each of which is copied on
to one of the three registers. The operand �eld of these registers are copied



V. Malba�sa and M. Manwaring: Pipelined processor architecture ... 307

from the operand �eld of the IR. When a controller instruction is in the
write stage the contents of the non-empty ADREG, EXREG1 and EXREG2
are copied to the CMQ and CEQ.

5.2 Memory unit

The architecture of the memory unit is presented in the Fig. 2, and
some of its instructions are described in the Table 4.

Table 4

memory instruction action implied pipe delay
ACMVR0 DR.M OFFSET compare variable with 0 0 cycle

ACMVIO DR.M OFFSET compare indirect variable with 0 1 cycle

ACMVR1 DR.M OFFSET compare variable with 1 0 cycle

ACMVI1 DR.M OFFSET compare indirect variable with 1 1 cycle

ARLS DR.M OFFSET relation operation of type var rel var 0 cycle

RLGT VALORVAR > comparison and second operand 0 cycle

RLGE VALORVAR >= comparison and second operand 0 cycle

SNVR DR.M OFFSET send variable to MEQ 0 cycle

SNVI DR.M OFFSET send indirect variable to MEQ 1 cycle

STQV DR.M OFFSET store variable from EMQ in address 0 cycle

STQI DR.M OFFSET store variable from EMQ in address ind. 1 cycle

STIV DR.M OFFSET store immediate data in address 0 cycle

STII DR.M OFFSET store immediate data in address indirect 0 cycle

STID VALUE literal value from the previous instruction 0 cycle

SNAR DR.M OFFSET send structured var to MEQ, 1st parcel 0 cycle

SNOD OFFSET 2nd parcel, o�set is literal 0 cycle

SNOV DR.M OFFSET 2nd parcel, o�set is variable 0 cycle

STAR DR.M OFFSET store structured var from EMQ, 1st parcel 0 cycle

STOD OFFSET 2nd parcel o�set is literal 0 cycle

STOV DR.M OFFSET 2nd parcel o�set is variable 0 cycle

The memory unit receives its instruction from the controller unit trough
the CMQ. At each clock cycle an instruction is fetched form the CMQ and
copied to the address instruction register (AIR). If the queue is empty, an
NOP instruction is generated. This address is copied onto the memory ad-
dress register (MAR). If the instruction requires a memory read, then the
data is read from the data cache (DC) to the load memory data register
(LMDR), and is subsequently written into MXQ. If memory write is indi-
cated, the contents of store memory data register (SMDR) is written to the
DC. The value in the SMDR has been copied from the AIR during an earlier
cycle (ID). In both cases, the address of the load/store operation is fetched



308 Facta Universitatis ser.: Elec. and Energ., vol.13, No.3 December 2000

from the MAR. The second category of instructions that the memory unit
handles is the comparison instructions. In this case the instructions are
fetched from the CMQ, the relation evaluated by the memory unit compara-
tor, and the result is written back to the controller via the MCQ. The third
category of instructions that is handled by this unit are the subroutine call
and return. The processing of these instructions involves the creation or
deletion of data stack frames and will be explained later.

5.3 Execution unit

The execution unit fetches its instruction from the CEQ. As in the case
of the memory unit, an empty CEQ generates a NOP. The instruction set
of the execution unit is shown in the Table 5.

Table 5

instruction action implied

IVAL VAL push value operand on the expression stack

QVAL push a pointer to QITEM on the expression stack

OPER <OPERATOR> execute the operation speci�ed by the OPERATOR

�eld on the �rst two items on the expression stack

SEND send the value in RESREG to the EMQ

5.4 Address encoding

MSA supports two types of memory objects: (i) simple scalar objects
and (ii) structured objects. Al simple variable operands are encoded by a pair
of values which are combined together to form the address of the variable,
i.e. to bind the variable to a memory location. The 24 bit address consists of
a four bit display �eld and a 20 bit o�set �eld. The display �eld determines
the environment in which the variable is de�ned. The display �eld is decoded
to point to a display register in the memory unit which contains the base
address of this environment. The actual address is calculated by adding the
20 bit o�set to the base address speci�ed by the relevant display register.
Since the o�set �eld is 20 bit long this implies that at most 220 local variables
are allowed in each environment. A 4 bit value for the display register implies
that a maximum static nesting of 16 levels are supported by the MSA.

Structured variables are characterized by a base address, display and
dimension. Each component of a structured object is further speci�ed by
an o�set. The address of a component of a structured object is formed by
adding three components: (i) base address of the data frame which contains
the object and which is determined by the display register, (ii) base address



V. Malba�sa and M. Manwaring: Pipelined processor architecture ... 309

of the object, and (iii) o�set of the component. In accordance to the DES
principle, the base address and the display level of the structured object
is speci�ed by a leading parcel, and the o�set is speci�ed by a dependent
parcel.

5.5 Procedure abstraction

The instruction set of MSA has been augmented to support the proce-
dure abstraction. A distributed version of the Johnston's Contour model has
been adopted for this purpose, [9], [10]. The management of the run-time
environment necessary for this feature is distributed between the controller
and memory units. The conventional activation stack is split into two stacks
in the MSA. The control stack, which stores the return addresses, is main-
tained by the controller unit, and the data stack, which provides the space
for the local variables is managed by the memory unit. Access to non-local
variables is provided through the display mechanism. The displays are main-
tained in 16 display registers (DR.1 - DR.16) in the memory unit. Apart
form the display registers, the memory unit also contains a HIGHMEM reg-
ister, which points to the top of the data stack, and a CURDISP register
which points to the display register associated with the current environment.

The layout of the activation record of a procedure in the data stack
is organized in the following way. The �rst entry contains the old value
of the display register m which was saved at this location when the frame
was created. The rest of the frame consists of parameters passed to the
procedure and local variables, which includes both scalar and array type
variables. Heap type storage is not required because dynamic variables are
not supported in the MSA.

5.6 Control transfer instructions

Both unconditional and conditional control transfer instructions are
present in the instruction repertoire of the MSA. GOTO implements control
transfer. The conditional control transfer statement is formed of two sets of
instructions, the LOOP instruction and the relational instructions transfer
statement. First the condition on which the transfer is predicated must be
evaluated. Once the value is known, actions pertaining the execution of con-
trol transfer can be undertaken, if required. The relational instructions are
responsible for the evaluation of the branch condition. This set of instruc-
tions is DES encoded to alleviate structural complexity. The two leading
parcels are RLS1 (for relation of the type VAR REL VAL) and RLS2 (for



310 Facta Universitatis ser.: Elec. and Energ., vol.13, No.3 December 2000

the relations of the type VAR REL VAR). The rest of the instructions specify
the kind of relational operation and the second operand of the expression.
the interpretation of the second operation (variable or literal value) is contin-
gent upon the preceding parcel. Also included in the category of relational
instruction are four single word instructions which compare the immediate
operand for equality with 0 or 1.

6. Performance Characteristics

The goal of this part of the project was to study the e�ects of the varia-
tion of di�erent architectural parameters on the pipelinedMSA performance.
We �rst present the cycle level simulator that is used to execute the repre-
sentative benchmark programs on the pipelined MSA, and then the results
obtained by means of the simulator.

6.1 Simulator

To provide a testbed for exploring the performance of the proposed ar-
chitecture a cycle level simulator of the described pipelined MSA has been
implemented, [5]. The overall structure of the simulator is given in Fig. 3.
The simulator reads a hardware speci�cation �le which de�nes various archi-
tectural attributes of the machine to be simulated. Parameters that can be
speci�ed include the various queue lengths and relative speeds of the di�erent
units. The program consists of four main modules, three of which simulate
the controller, memory and execution units, and the fourth, the scheduler,
coordinates the activities of the di�erent units and also collects the data at
every clock cycle. Several utility programs are also provided. A compiler
translates the high level language programs into controller machine language
programs. Several result analyzers process the large data �les generated by
the simulator and compute the performance parameters.

The simulator executes programs written in the machine code and then
generates various sets of data characterizing the execution process. These
includes total parallel and serial execution times, execution time of each
component, types and number of pipeline stalls, address traces, etc. The
estimate of serial time is based on the execution time of the same program
on an equivalent serial machine.

6.2 Performance indicators

The measurements of performance are presented in comparison with
some standard con�gurations. An equivalent serial machine of a pipelined



V. Malba�sa and M. Manwaring: Pipelined processor architecture ... 311

Fig. 3. The srtucture of simulator

MSA is a serial machine whose instruction set is identical to the instruction
set of the controller unit of the MSA, and for which the execution time of
each instruction is de�ned by the sum of the execution times of the semantic
actions activated by the controller instruction in the MSA. Therefore, the
equivalent serial machine does not incur the penalty of synchronization of an
MSA. A base MSA is a machine, all of whose component IPs have a speed of
unity and all the queues of which are of length one. A metric that measures
the e�ectiveness of the MSA con�guration is the ratio of execution time of
a serial equivalent machine to that of a base MSA.

A component speedup is the speedup factor of a given component. This
is an architectural attribute speci�ed as a design parameter. The compo-
nent speedup characterizes the computational capability of the component
which can be augmented by di�erent mechanisms, e.g. by investing more
silicon in the unit (pipelined unit, faster circuits etc.) or by using a dif-
ferent technology (ECL, GaAs). The parameter component speedup thus
denotes a quantitative characterization of the increase in the computational
capabilities.

A System speedup for an MSA of a given con�guration is the ratio of
the execution time of a program on a base machine to the execution time of



312 Facta Universitatis ser.: Elec. and Energ., vol.13, No.3 December 2000

the same program on an MSA of the given con�guration. The speedup of
the base machine over the equivalent serial machine for di�erent benchmark
programs is given in [Man].

6.3 Benchmark programs

The performance of the MSA relative to the equivalent serial machine
has been extensively studied by means of the simulator. The workload of
the simulation whose results are presented in this section consists of seven
programs. The �rst �ve Livermore loops represent a load characterized by
intensive oating point processing, and results in a high degree utilization
of the execution unit, and also provide a moderate level of loading of the
memory units. Loops 1 and 2 involve evaluation of long expressions which
augments the level of parallel execution of the memory and execution units
through the mechanism of use order renaming.

The next benchmark program involves the evaluation of the Ackerman's
function. It is a memory intensive program, characterized by deep recursive
calls and in which the execution unit is almost never used and results in a
completely unbalanced loading of the components. The last program is a
list insertion routine which inserts several data items in a doubly linked list.
This program is characterized by shallow calling depths and heavy utilization
of the memory unit at the expense of the execution unit, although not to
the extent of the previous program.

6.4 Variation of the queue length

For this set of experiments the length of the di�erent queues were varied
over a range of 1 to 10 with increments of 1. The e�ects of the instruction
queues (CMQ and CEQ) were studied with unbounded MXQ and XMQ, and
vice versa, the e�ects of the MXQ and XMQ were studied with unbounded
CMQ and CEQ. This was done in order to decouple the e�ects of the various
queues on performance. The results obtained, with minor variations, were
almost identical for all the programs in the benchmark suite.

Varying the length of the instruction queues from the minimum (1) to
the maximum (10) value results in an improvement of the performance by
a factor of 1.05 over the base machine. Moreover, this value was reached by
a queue size of 3, after which increasing the queue size had no e�ect on the
performance. This observation was mirrored in the case of study involving
the other set of queues. The maximum speedup obtained was 1.2, and the
saturation point was reached by a queue length of 3.



V. Malba�sa and M. Manwaring: Pipelined processor architecture ... 313

The reason for this minimal increase is easily explained. The controller
unit for each instruction it executes produces data items (instructions) that
must be processed by the execution and memory units. Therefore, a close
lock-step type synchronization is established between the controller and the
other two units which minimizes the e�ect of the capacity of the communi-
cation channels.

6.5 Variation of the component speedup

This set of experiments shows the e�ect of varying the speed of the
memory and execution units over a range of 1 to 16 (with the controller
speed as the base speed) on the program execution time.

Fig. 4. System speedup vs. memory unit speedup (Livermore #1)

Di�erent combinations of memory and execution unit speed are consid-
ered. An example of a typical diagram obtained running this set of exper-
iment is given in Fig. 4 that shows the system speedup versus the memory
unit speedup. The Livermore loop programs are characterized by intensive
oating point computations and as such the greatest bene�t is reaped by
enhancing the processing power of the execution unit. This observation is
completely corroborated by the system speedup curves. Compared to the
gain obtained by increasing the speed of the execution unit, the net gain in



314 Facta Universitatis ser.: Elec. and Energ., vol.13, No.3 December 2000

processing time obtained by increasing the processing power of the memory
unit is relatively small.

The Ackerman benchmark and the List insertion benchmark provide
a di�erent workload and therefore radically di�erent performance pro�les.
The base speedup in the case of the Ackerman function is 2.1 and for list
is 1.9, considerably larger that the �rst Livermore loops (1.73). In view
of the fact that both this benchmark create a highly unbalanced load this
result might seem surprising. The reason for this apparent discrepancy can
be explained by the fact that the exclusion of the execution unit from the
processing also excludes all the various stalls associated with this unit and
results in a con�guration where the controller and memory units operate
very much like a two stage pipeline which results in the doubling of the
combined throughput of the system. The same observation applies to the
case of the List insertion program, albeit to a lesser extent.

7. Conclusion

The parallelism exploited by the machine for parallel interpretation is
very di�erent in avor from that of temporal or spatial parallelism, and can
be termed structural parallelism. It exploits the parallelism inherent in the
structure of the interpretation process. The performance of an architecture
for parallel interpretation of high level machine languages (MSA) can also be
enhanced by incorporating other forms of parallelism within its architecture:
superscalar MSA or pipelined MSA.

The paper presents the design details of a pipelined MSA with three
pipelined units: controller, memory and execution units. Note that in all of
the three pipelines the range and domain of the instructions do not overlap.
The consequences of the logical and physical separation of the range and
domain structures are profound, because it implies that there are no data
hazards in these pipelines, and thus they do not su�er from the crippling
e�ect of this type of hazards.

The pipelined units were designed by using the Distributed Encoding
Scheme (DES) that was derived from the observation that the most complex
instructions consists of a number of operations which are executed in a se-
quential fashion and which usually over-utilize the resources of the pipeline.
The DES retains structural simplicity of the instruction set at the cost of an
acceptable increase in code size.

Performance measures, obtained by a cycle level simulator, show that
the system speedup of about two is obtained relative to the equivalent se-



V. Malba�sa and M. Manwaring: Pipelined processor architecture ... 315

rial interpretation for �ve di�erent benchmark programs. Analysis of the
performance curves also reveals information about the optimal speed con�g-
urations. For example, for the Livermore loops, it can be seen that 90% of
the maximal performance can be obtained by controller/memory/execution
unit speed ratio of 1/14/8. Further increase in the component speed does
not result in a proportionate increase in system performance. Of course,
the optimal speed con�guration is dependent on the load characteristics. In
the case of the Ackerman function, the optimal speed ratio would be 1/4/1/
which results in 95% of the maximal attainable speed.

REFERENCES

1. M.L. Manwaring and V.D. Malba�sa: A processor architecture for parallel in-
terpretation of abstract machine languages., to appear in Facta Universitatis, Series
Matematics and Informatics, 1998.

2. M. Flynn: Computer Architecture: Pipelined and Processors, Parallel Processor
Design., Jones and Bartlett, Boston, 1995.

3. J. Smith: Decoupled access/execute computer architecture., ACM Trans. Computer

Systems, Vol. 2, No. 4, April 1984, pp. 289-308.

4. D. Eddy and J. Campenhout: Interpretation and Instruction Path Coprocessing.,
MIT Press, 1990.

5. M.F. Chowdhury: Parallel interpretation of abstract machine language. Ph.D.

Thesis, Washington State University, 1993.

6. J. Henessy and D. Patterson: Computer Architecture: A Quantitative Ap-
proach., Morgan Kaufman Publishers, 1996.

7. M. Kuga, M. Kazuaki and S. Tomita: DSNS: Yet another superscalar processor
architecture., Computer Architecture News, Vol. 19, No. 4, 1991, pp. 14-29.

8. M. Kazuaki, N. Irie, M. Kuga and S. Tomita: SIMP: A novel high- speed
single-processor architecture., Proc. 16th Annual Int'l Symposium on Computer

Architecture, June 1989, pp. 78-83.

9. A. Aho, R. Sethi and J. Ullman: Compiler Principles, Techniques, and Tools.,
Addison-Wesley, 1986.

10. J. Johnston: The contour model of block structured processes., SIGPLAN Notices,

Vol. 6, 1971, pp. 121-145.


