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JENSEN'S INEQUALITY AS A CRITERION FOR

COMPARISON OF BURSTY AND RANDOM

ERRORS IMPACT

�Zarko Markov and Dragan Miti�c

Abstract. Use of Jensen's inequality as a criterion for comparison of impact
of bursty and random errors on digital and signaling channels is presented
in this paper. Some examples show that the availability of digital 64kb/s
channels and CCS no 7 links is smaller under bursty errors. The CCS no 7
queueing delay time may be longer or shorter under bursty errors depending
on MSU length and signaling load.
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1. Introduction

Jensen's inequality, [1], describes relationship between mean value of
argument (or random variable) and mean value of a convex (or concave)
function. In the analysis of the impact of errors on digital transmission the
models with uniformly distributed or random errors are dominant. It is very
interesting to calculate the impact of so called bursty errors or to compare
models with random to models with bursty errors.

Model of channel with one kind of bursty errors, known as Gilbert-
Elliott model, is described in [2]. As a result of measurement this model is
described in [3], also, under the name "model with bimodal errors". In this
short paper we use the Jensen's inequality to compare the impact of random
and bursty errors on digital and signaling channel characteristics.
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2. Jensen's Inequality

Jensen's inequality states: if f is a convex function and X is a random
variable then

E(f(X)) � f(E(X)) (1)

where E(V ) is the mean value of variable V .

A function is convex (concave) if it always lies below (above) any chord.

For strictly convex function E(f(X)) > f(E(X)) holds and we al-
ways observe strictly convex (concave) functions in this paper. For concave
(strictly concave) function, a reverse inequality holds.

3. Model of Digital Channel
with Two Error Rates

The channel with two possible states is observed, like in [4]. It is the
model similar to Gilbert-Elliott model, with the state of low (G) and the
state of high (B) error rate, Fig. 23 in Ref. [4]. Errors are uniformly
distributed in both states G and B, like in [4]. The time duration of being
in state G(B) is random variable Tg(Tb) with mean value tg(tb). We assume
that tb is long enough that a stationary state may be established in digital
or signaling channel.

The probability that the channel is in state G(B) is Pg(Pb), Pg+Pb = 1,
Pg=Pb = tg=tb. The probability that the channel moves from state G to state
B (from state B to state G) is Pgb(Pbg). It is clear that Pg = Pbg=(Pgb+Pbg)
and Pb = Pgb=(Pgb + Pbg).

The bit error rate may be considered as a random variable which takes
value BERg(BERb) with probability Pg(Pb). This model is called the model
with bursty errors.

4. Comparison of Impact of Random
and Bursty Errors

We observe the function f(BER) that represents the dependence of
some property or characteristic f of digital or signaling channel on BER
(Bit Error Rate). Under random errors this property is designated with
fr(BER) and under bursty errors with fbur(BER). This property may
be: mean available and unavailable time of digital 64kb/s channel, mean
queueing delay time ofMSU sending on CCS (Common Channel Signaling)



�Z Markov and D. Miti�c: Jensen's inequality as a criterion .. 215

no 7 link, (un)availability of digital 64kb/s channel and CCS no 7 link etc.
Let this function be strictly convex between points A(BERg; fr(BERg))
and B(BERb; fr(BERb)). Imagine the chord between points A and B. We
can say the following:

The function fr(BER) between points A and B represents the set of
values of property f for random BER and for each mean BER value, also.

fr(BER) = f(E(BER)) = f(PgBERg + PbBERb); Pg ; Pb 2 [0; 1] (2)

The chord between points A and B represents the set of mean values of
properties f in the case of bursty errors i. e. fbur

fbur(BER) = E(f(BER)) = Pgf(BERg) + Pbf(BERb); Pg ; Pb 2 [0; 1]
(3)

According to Jensen's inequality it holds

fbur(BER) =Pgf(BERg) + Pbf(BERb)

> f(PgBERg + PbBERb) = fr(BER)

We conclude that the property f , expressed by strictly convex function,
has the greater values under bursty errors than under random errors.

For property f expressed by concave function f , the reverse conclusion
is valid.

5. Examples

Example 1. We observe the functions of mean available, fta, and un-
available, ftu, time of digital 64 kb/s channel on BER, Fig. 1. We see
that both functions are strictly convex so the mean available and unavail-
able times are greater under bursty errors than under random errors. This
is, especially, expressed if the values BERg and BERb are on the di�erent
sides of the knee of the function fta(ftu). Similar conclusion may be drawn
for mean changeover time and mean alignment time of a CCS no 7 link.

Example 2. The functions of availability, fA, and unavailability, fU , of
the digital 64 kb/s channel, Fig. 2, are both concave. As a consequence the
availability and unavailability of a digital 64 kb/s channel are greater under
random errors than under bursty errors in the region of great fA and fU .
Similar conclusion holds in the case of (un)availability of signaling CCS no
7 channel.
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Fig. 1. Mean available time fta and mean unavailable time ttu
against BER (random errors) for digital 64 kb/s channel.

Fig. 2. Availability fA and unavailability fU of 64 kb/s channel
against BER (random) calculated according to ITU-T Rec. G.821.
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Example 3. Very interesting example is function of mean queueing delay
time (mqdt) for MSUs (Message Signal Unit) on BER, fQ, in signaling
over a CCS no 7 link, [6]. This function may be strictly concave (a), strictly
convex (c) and very close to straight line (b), Fig 3. The shape of function
depends on MSU length. Increase of signaling load enlarges the convexity
of function fQ. Increase of MSU length causes function fQ to become more
concave. Comparison of bursty and random errors impact on mqdt must be
calculated for each case. In the case shown in Fig. 3. the impact is equal
for MSU length of cca 60 octets.

Fig. 3. Queueing delay time of CCSNo7 link fQ
against BER, a = 0:2, MSU lenght 15, 60 and 150 octets.

Example 4. We rearrange the formulae for calculation of MSU mqdt,
fQ, in the presence of disturbances on CCS no 7 link, ref. [6], table 2/Q.706,
so that fQ is dependent on BER instead on probability of erroredMSU , Pu,
as in [6]. Now, we can easily �nd the second derivative (byMATHEMATICA

for example), f 00 = dfQ=d(BER), and determinate the convexity (f 00 > 0)
or concavity (f 00 < 0).

6. Conclusion

Jensen's inequality may be used for comparison of digital and signaling
channels properties under random and bursty errors. If the property of the
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digital channel is presented by convex function on BER the impact of bursty
errors is greater and vice versa. If the property may be expressed as a
mathematical function in explicit form then the impact of random or bursty
errors may be estimated using the second derivative.
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