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SPECTRAL CORRELATION OF PSK SIGNALS

Desimir Vuéié and Milorad Obradovié

Abstract. Based on a new aperiodic homogeneous Markov chain represen-
tation of M-ary PSK signals, a new matrix-based stochastic method for their
spectral correlation evaluation is proposed. Explicit formulae for the spec-
tral correlation function of these signals are derived and some calculated
and graphically presented results of their spectral correlation characteriza-
tion based on the proposed method are given, also.
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1. Introduction

The spectral correlation is an important characteristic property of mod-
ulated signals, which is the consequence of their second-order cyclostation-
arity. It exhibits as correlation between pairs of the spectral components
whose difference of the central frequencies is called cycle frequency. The uti-
lization of this spectral redundancy in the spectral correlation transformed
space enables substantial performance improvement in the signal parame-
ter estimation (accuracy and reliability), signal detection and classification.
The spectral correlation-based signal processing application have significant
advantages over more conventional approaches especially when the signal of
interest is buried in noise (which is not cyclostationary) and/or masked in
both time and frequency by other interfering signals.

The spectral correlation features are result of hidden periodicity con-
version into first-order periodicity (corresponding to spectral lines in the
power spectral density (PSD)) by an appropriate quadratic transformation.
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This cyclic features are discretely distributed in cycle frequency and they
differ substantially for different types of modulations, even when their PSD
are continuous with overlapping features and occupy the same bandwidth.
The spectral correlation evaluation and corresponding cyclic features anal-
ysis (spectral correlation characterization) is a key stage at the modulated
signal detection and classification in this transformed space.

Many of the digital modulation types can be represent in quadrature
form. In general, these are quadrature-amplitude modulation (QAM) and
staggered QAM (SQAM). In this paper the spectral correlation characteri-
zation of M-ary PSK signals, as an important class of the constant-envelope
quadrature digital modulation, is performed.

A nonstochastic method for the spectral correlation evaluation of vari-
ous types of digitally modulated signals is presented in [1,2] by modeling
the modulated signal as linear periodically time- variant transformation
(LPTV), either of purely stationary or of cyclostationary times-series.

In this paper, a new aperiodic homogeneous complex-state Markov chain
representation of M-ary PSK signals as constant-envelope QAM signals is
introduced and, applying a previously proposed [4] general stochastic matrix-
based method for the spectral correlation evaluation of memoryless digitally
modulated signals, their spectral correlation is evaluated. The method as-
sumes that the information sequence is purely stationary. Some characteris-
tic computed and graphically presented results of their spectral correlation
characterization are given as examples.

2. Cyclic Autocorrelation and Spectral Correlation

The information content of the modulated signal is usually a stationary
random process that, after being modulated by a sine-wave carrier, results
in cyclostationary signal. The periods of cyclostationarity or corresponding
cycle frequencies correspond to carrier frequencies, symbol rates or other
underlying periodicity in the modulated signal.

A signal is said to be n-th order cyclostationary if and only if there
exist some n-th order nonlinear signal transformation that generates addi-
tive sine-wave components that spectral lines correspond to, or (equivalent
to spectral domain) if and only if there exist n statistically dependent spec-
tral components (their joint n-th order moment is nonzero) whose center
frequencies sum to nonzero [2].

In general, a complex signal x(t) is said to exhibit second-order cy-
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clostationarity if there exists a cycle frequency « # 0 for which the cyclic
autocorrelation defined as

RS, (m)= 1

Z —00

Bla(t+ %)x*(t - %)}ejz”“tdt (1)

N| =
\mlw

N

exist as function of 7 and is not identically equal to zero (E{-} denotes
expected value) [1,2]. The conjugate cyclic autocorrelation for a complex
signal xz(t) is obtained by removing the conjugation operation * in the above
definition, i.e.

RO () = lim l/E{x(t+%)x(t—g)}eﬂ'2mtdt @)

If cycle frequencies « for which a signal x(¢) exhibits cyclostationarity
are multiples of more than one fundamental frequency (reciprocal of multiple
incommensurate periods), than the signal z(t) is said to be polycyclostation-
ary.

The spectral correlation and the conjugate spectral correlation are the
Fourier transforms of the cyclic autocorrelation or the conjugate cyclic au-
tocorrelation, respectively [1,2], i.e.

s.(f) = / RE, (r)e~ 2" dr, 3)
and -
se.(f) = / RE,.(r)e 277 dr. (4)

3. Markov M-ary PSK Signal Model

Digital carrier-modulated signal can be represent in quadrature, or com-
plex form as

z(t) =ve(t) cos(2mfot + ¢o) — vs(t) sin(27 fot + Po)

. , 5
— Re{v(t)ej(2”f0t+¢°)} (5)
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where f. is the carrier frequency, ¢¢ is initial deterministic phase and v(t) =
ve(t) + jus(t) is the complex envelope (v.(t) and v,(t) are in-phase and
quadrature component of v(t), respectively) of signal z(t).

Generally for M-ary digital modulation (M = 2¥), the blocks of binary
information sequence (b,,) of k = log, M bits are split and converted (D/A)
into two parallel symbol subsequences (d.,) i (ds,), which are components
of M-ary symbols (d.,, ds ). Subsequences (d.,) and (ds,,) are shaped,
then they modulate in-phase carrier cos(w.t) and quadrature carrier sin(w,t),
respectively. Their sum results in QAM signal, finally. Mutual dependence
of the in-phase and quadrature components of M-ary PSK signals results in
their circular signal constellation [3]. Thus, M-ary PSK signal is constant-
anvelope QAM signal. In the case of M-ary PSK signals each k-bit block
of binary information sequence (b,) is converted to M-ary symbol pairs of
in-phase (d.,) and quadrature (ds,) subsequences, where

(don,ds.n) € {cos[%@m —1)], sin[%(Zm S (6)

The complex envelope of M-ary PSK signals can be expresed as
U(t) = Z(dc,n + ]ds,n)Q(t - nT)

= Ynq(t — nT) ’ "

where T' = Ty log, M is symbol interval (Ty- bit interval) and ¢(t) is shaping
pulse of duration 7. The complex symbol sequence (v, ) takes the following

values
. m(2m—1)

Yo € {embmmr = {7 1oy (8)

The complex envelope of M-ary PSK signal can be expressed in matrix
form as [4]

v(t) =Y eng”(t —nT)
. ; (9)

where (g,) is an aperiodic homogeneous Markov stationary vector-valued
discrete process which takes values from M-dimensional unit-basis vector
space, i.e. €, € {€;}M,, e = [6i1,0i2,... ,0iar) (0 is the Kronecker delta
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function). g(t) is the state vector pulse whose components are signaling
waveforms {g;(t)}}, associated with each state in which process remains
for T seconds.

Analyzing M-ary PSK signal constelation, the values of complex sym-
bols 7, and the form of complex envelope v(t) it can be noticed that the
signaling pulse vector (the state vector pulse) can be represented in the form

g(t) = [p(t), —p*(¢), —p(1),p" (). (10)

Dimensions of the vector pulses g(¢) and p(t) are 1 x M and 1 x (M/4),
respectively. The vector pulse p(¢) has the form

p(t) = )|’ T, H ... S, (11)
_
whnere 1S T
q(t) = z (12)
03 |t| > 5

Thus, the vector pulse p(t) correspond to I-quadrant signal points of M-ary
PSK signal space.

In the special case of BPSK (Binary PSK) signal, the signaling pulse
vector g(t) contains only two complex scalar components, i.e.

g(t) = [p(t), —p(t)], (13)

end _
p(t) = q(t)e’?, (14)

This Markov M-ary PSK signal model can be completely described by
1 x M-dimensional initial state probability vector w(®) = [wz(o)] = [Pr{ey =
e;}], M x M-dimensional state probability transition matrix P = [p;;] =
[Pr{en,+1 = ejle, = e;}], and the state vector pulse g(¢) given by (10),
or by (13) for BPSK signal. The appropriate state transition probability
matrix P and the initial state probability vector w(?), for the statistically
independent and equally likely symbols +,,, are given by

1
P =—/[lrrxm]

; (15)

-

w :M[llxM]
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where [, «,, denotes n x m-dimensional matrix (vector) having all elements
equal to unity. The stationary state probability vector w = [w;]ixp =
[Pr{e, = e}]1xm = limg_ w(© P¥ is identical to w(®. The joint probabil-
ity matrix of (&,) is given as Wy, = [Pr{e,, = €;,€nsr = € Hurxm = WoPF,
k>1, W_, = W where W, = diag(w) is the diagonal matrix of stationary
state probabilities {w;}M,. It can be shown [5] that the mean p. and au-
tocorrelation R. (k) of homogeneous Markov stationary vector-valued chain
(en) are given by
. =Fle,} =w

pe =E{ T} ‘ (16)

RE(IC) :E{En X €n+k} = Wk

4. Spectral Correlation of M-ary PSK Signal

The general formula for the spectral correlation evaluation of memory-
less digital modulation [4] has the form

Se.1) =5 [0 (F — 1) + S50 (—F — 1)
+ei200 g 2fe (f) + e—j2¢og—a—2fc(_f)* ,

vo* vv*

(17)

where the spectral correlation S, (f) and the conjugate spectral correlation
S2 . (f) of the complex envelope v(t) are given by

1 .. « « « _n
s (f) = TG (f - §)K(f + §)GT(f + 5)7 a=5 (18)
03 (67 #%
and
I .. « « « _n
52 () = TG (=f+ §)K(f + §)GT(f + 5)7 a=5 (19)
03 (6] #%

where G(f) is the Fourier transform of the state vector pulse g(¢) and the
spectral density K (f) of (&,) is the discrete Fourier transform of the joint
probability matrix Wy, [4]. It can be seen that only the spectral correlation
S of v(t) determines part of the M-ary PSK spectral correlation exhibition
at cycle frequencies & = n /T equal to a multiple of the symbol rate, because
the last two terms of eqn. (17) cancel to zero for & = n/T (when 2f.T is not
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integer). On the other hand, only the conjugate spectral correlation S§,. (f)
determines part of the M-ary PSK spectral correlation exhibition at cycle
frequencies a = £2f, + n/T associated with the doubled carrier frequency,
because the first two terms of eqn. (17) cancel to zero for o = £2fc+n/T
(when 2f. T # n). This separation of the spectral correlation exhibition
enables more convenient cyclic feature analysis compared to other methods.

In the case of statistically independent sequence (e, ), its joint proba-
bility matrix is W}, = wlw, k # 0, so in that case K(f) can be represented
in the form

K(f)= Y Wie /7
k=—o00

(20)

=W, — wlw

1 & k
1—516;005(10—?)].

The Fourier transform G(f) of the state vector pulse g(t), given by (10),
has the form

G(f) =[P(f), =P*(=f), = P*(f), P* (= )]

P(f) _ [ejﬁ’ej%, o ,ej (Zm]\zl)w , ej(M;/IZ)ﬂ'j|Q(f)7 (21)
where .
au == 22

is Fourier transform of rectangular shaping pulse ¢(¢) given by (12), or some
other shaping pulse.

The parts of the spectral correlation originating from the second term of
K (f) cancel to zero due to the matrix w” w structure and the vector pulse
transform G(f) structure. Thus, the spectral correlation of M-ary PSK sig-
nals contains no spectral lines (Dirac deltas in f) and only the first term of
K(f), Wy = diag(w), is relevant for their spectral correlation evaluation in
the case of statistically independent and equally likely digital symbols. Sub-
stituting eqns. (20) for K(f) and (21) for G(f) into eqns. (18) and (19) for
S& (f) and SS,.(f) , respectively, and performing suitable transformations,
we obtain

L oepr_ @ o
s () - T (-3 +3) -

0, o #
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and
«

1 a M
m@(‘fjL §)Q(f+ 5) D oy =
SQ?‘U* (f) = m=1

0, a #
where ¢, is given by (8). For the M-ary PSK, the last factor in eqn. (23)
is Z%:l ¢ cm = M and the sum Zrﬂle 2 = 2%21 exp[j2n(2m — 1)/M]
in eqn. (24) differs from zero only for M = 2. Therefore, only BPSK signal
exhibits spectral correlation at both cycle frequencies associated with the
symbol rate, « = n/T, and associated with the doubled carrier frequency,
a = +2f. +n/T. Thus, M-ary PSK signals for M > 4 (QPSK signal, for
example) does not exhibit spectral correlation at frequencies associated with
the doubled carrier frequency o = £2f.+n/T, but only at « = n/T, instead.

(24)

NS 9IS

Finally, substitution the above results into eqn. (17) yields explicit
formula for the spectral correlation of M-ary PSK signals

1
S2(f) = m[QU ~ fe+ Q(F ~ £~ %)

2 2 ne (29)
QU+ -] a=%
for M > 4, and for BPSK signal (M = 2) is
(e - fr DG f- D)
s )| QU + o+ (- 5. =7,
" Hau - for Dt £ |
| +eIQU + Lo+ P~ fo— 5], a=F2f+ 1

T
(26)

where Q(f) is Fourier transform of the shaping pulse q(t) and for rectangular
pulse is given by (22). The spectral correlation magnitudes for BPSK, QPSK
and 8-PSK signals with the same bit rate are shown in Fig.1, Fig.2 and
Fig.3, respectively. On these figures one can notice the above mentioned
characteristic cyclic features of M-ary PSK signals.

5. Conclusion

A new aperiodic homogeneous Markov chain representation of M-ary
PSK signals is introduced and, by applying the proposed stochastic matrix-
based method, explicit formulae for their spectral correlation are evaluated
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Fig. 1. Spectral correlation magnitude for BPSK with f. = 1.125/T.

Fig. 2. Spectral correlation magnitude for QPSK with f. = 2.25/T.

and corresponding their characterization is performed. The characteristic
of the proposed method to separate spectral correlation exhibition at cycle
frequencies associated with symbol rate and with doubled carrier frequency
enables unique, simple and straightforward cycle feature analysis of M-ary
PSK signals. The obtained final results are similar to those derived, by other
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Fig. 3. Spectral correlation magnitude for 8-PSK with f. = 3.375/T.
means, in [1] and [2].
REFERENCES

1. W.A. GARDNER: Spectral correlation of modulated signals: Part I1I- Digital modu-
lation. IEEE Trans. Comm. Vol. COM-35, No. 6, June 1987, pp. 595-601.

2. W.A. GARDNER: Cyclostationary in Communications and Signal Processing. IEEE
Press, 1994.

3. J.G. Proaxkis: Digital Communications. 3rd Edition, McGraw-Hill, 1995.

4. D. Vuci¢ AND M. OBRADOVIC: A Method for Spectral Correlation Characterization
of Digital Modulation. Proc. CSDSP’98, Sheffield, UK, April 1998, pp. 190-193.

5. D. Vuc¢i¢ AND M. OBRADOVIC: Spectral correlation evaluation of MSK and offset
QPSK modulation. Signal Processing, Vol.78, No.3, 1999, pp. 363-367.



