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MATRIX MULTIPLICATION ON

NON-PLANAR SYSTOLIC ARRAYS

Teu�k I. Toki�c, Emina I. Milovanovi�c, Natalija M. Novakovi�c,

Igor �Z. Milovanovi�c and Mile K. Stoj�cev

Abstract. A modi�cation of standard design procedure for mapping nested

loop algorithms into systolic arrays is described in this article. This modi�ca-

tion enables us to obtain non{planar systolic arrays for matrix multiplication

with optimal number of processing elements for a given problem size. The

modi�cation is based on composition of two linear mappings.
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1. Introduction

There are totally nineteen SAs that can be obtained by the systematic
design methodology for mapping algorithms into systolic architecture [5,8].
SAs obtained by this methodology can be grouped into four classes according
to the interconnection pattern between the processing elements (PE): mesh{
connected (3 SAs { class 1), orthogonal (3 SAs { class 2), hexagonal ( 4 SAs
{ class 3), and non{planar (9 SAs { class 4). Most of the papers concern with
the �rst three classes [1{5] since non{planar SAs obtained by the standard
systematic design methodology have great number of PEs. For example, if
the dimensions of matrices which are multiplied are n� n , the arrays from
class 4 have 4n2 � 5n + 2 PEs [6, 8], compared with n2 PEs in the class 1
arrays.

In this paper we propose a modi�cation of the standard systematic
design procedure which enables us to obtain the class 4 SAs with optimal
number of PEs, i.e. n2. The modi�cation is based on the composition of
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two linear mappings. The �rst one accommodates the index space of the
matrix multiplication algorithm to the direction projection, �. The second,
maps the accommodated index space onto SA architecture. Further, we use
di�erent SAs performance measures to compare the obtained SAs with the
results found in [8].

2. Standard Synthesis Procedure

Suppose A = (aik) and B = (bkj) are two n�n matrices. A nested loop
algorithm for computing their product C = A �B is as follows

Algorithm 1

for k := 1 to n do

for j := 1 to n do

for i := 1 to n do

a(i; j; k) := a(i; j � 1; k);
b(i; j; k) := b(i� 1; j; k);
c(i; j; k) := c(i; j; k � 1) + a(i; j; k) � b(i; j; k);

where

a(i; 0; k) � aik; b(0; j; k) � bkj ; c(i; j; 0) � 0; cij � c(i; j; n):

The computational structure of Algorithm 1 is characterized by the index
space, Pint, where the data are used or computed, i.e.

Pint = f(i; j; k)j1 � i; j; k � ng; (2.1)

and a dependency matrix which consists of a set of constant dependency
vectors, D = [~e 3b ~e

3

a ~e
3

c ], each of them representing a data dependency cor-
responding to one of three variables (b; a; c, respectively). Matrix D for
Algorithm 1 is given by

D =

2
4 1 0 0
0 1 0
0 0 1

3
5 : (2.2)

Given a dependency matrix D, and index space Pint, all allowable pro-
jection directions ~� = [�1 �2 �3]

T , that give all planar and non{planar sys-
tolic arrays for matrix multiplication can be derived. In this paper we are
concerned with non{planar arrays, only. We call them the "X{arrays" be-
cause of the topology of interconnection pattern between the PEs. There
are totally nine projection directions that give the arrays with this topology.



T. I. Toki�c et al.: Matrix multiplication on non-planar systolic arrays 159

They are ~� = [1 1 2]T , ~� = [1 2 1]T , ~� = [2 1 1]T , ~� = [1�1 2]T , ~� = [�1 1 2]T ,
~� = [1 2 � 1]T , ~� = [2 1 � 1]T , ~� = [�1 2 1]T , and ~� = [2 � 1 1]T . Since the
design methodology is similar for all directions, without lost of generality
we will concern the array obtained by the direction ~� = [2 1 � 1]T . The
obtained results will be compared with one given in [8].

Each allowable projection direction is associated with the corresponding
space{time transformation matrix T which maps a computational structure
of the algorithm (D;Pint) into a systolic implementation. Matrix T which
corresponds to the direction ~� = [2 1 � 1]T , is of the form

T =

�
~�
S

�
=

2
64

1 1 1
�� �� ��
0 1 1
1 �1 1

3
75 (2.3)

where ~� = [1 1 1] determines time scheduling, and

S =

�
0 1 1
1 �1 1

�

is a space transformation which maps Pint into systolic array.

According to the standard synthesis procedure [8] the (x; y) positions
of the PEs in the SA are determined by

�
x

y

�
= S �

2
4 i

j

k

3
5 =

�
0 1 1
1 �1 1

�
�

2
4 i

j

k

3
5 =

�
j + k

i� j + k

�
(2.4)

for 1 � i; j; k � n. The communication links between the PEs are imple-
mented along the projections of data dependency vectors, i.e.

�S = S �D = [~e 2b ~e
2

a ~e
2

c ] =

�
0 1 1
1 �1 1

�
: (2.5)

The space of initial computations of Algorithm 1, Pin = fPin(a), Pin(b),
Pin(c)g, is de�ned as Pin(a) = f(i; 0; k)j1 � i; k � ng; Pin(b) = f(0; j; k)j 1 � j; k �

ng; Pin(c) = f(i; j; 0)j1 � i; j � ng

In order to obtain the correct time ordering of input data items in the
2D SA, the initial computation space has to be reordered. The reordering is
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performed as follows. Let ~p
 be a position vector of data item 
; 
 2 fa; b; cg
in the space Pin. The new position in reordered space P �

in is obtained from

~p �
 = ~p
 � (t(~p
) + 1)~e 3
 ; 
 2 fa; b; cg (2.6)

where t(p) = t(i; j; k) = i + j + k � 3 is a timing function which de�nes
a temporal distribution of the computation. The initial (x; y) positions of
input data items in the projection plane are obtained according to


(i; j; k) 7�!

�
x

y

�



= S � ~p �
 ; 
 2 fa; b; cg:

Data distribution at the beginning of the computation in this array is
depicted in Fig.1 for n = 3. Space{time parameters, which include total
execution time, Ttot, number of PEs in the SA, geometric and chip area,
speed{up, eÆciency, AT and AT 2 measures, are given in Table 1.

Fig. 1. Data distribution at the beginning of the computation
in the non-planar array synthesized by the standard
design procedure, for n = 3

3. Modi�cation of the Synthesis Procedure

In order to obtain non{planar SAs with better space{time parameters,
we involve a modi�cation of the standard synthesis procedure. The crucial
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novelty in our approach is that we do not perform mapping

(D;Pint)
T
7�!(�; �Pint) (3.1)

directly. Instead, we substitute (3.1) with the following two mappings

Pint
H
7�!P �

int; and (D;P �

int)
T
7�!(�; �Pint): (3.2)

where H is transformation that accommodates index space Pint to the direc-
tion ~� = [2 1 � 1]T . Namely, the features of the operations in Algorithm 1
enable that the computation of C elements can be performed over arbitrary
permutation of sequence (k1 � � � kn) of index variable k = 1; : : : ; n. The
mapping H = (F;G) is de�ned as

F =

2
4 1 2 0
0 1 0
0 �1 1

3
5 ; and G =

2
4�20

n

3
5 (3.3)

The mapping of index set f(i; j; k)g into new index set f(u; v; w)g using
transformation H is de�ned by

2
4 u

v

w

3
5 = F

2
4 i

j

k

3
5+G =

2
4 i+ 2j � 2

j

k � j + n

3
5 ; (3.4)

for each [i j k]T 2 Pint; 1 � i; j; k � n.

Now we will show that transformation H really accommodate Pint to
the direction ~� = [2 1 �1]T . Let [i j1 k]

T and [i j2 k]
T , j1 6= j2, be two points

from the space Pint. Their images in P �

int are [u1 v1 w1]
T and [u2 v2 w2]

T ,
respectively. Then according to (3.4) we have that

2
4 u1
v1
w1

3
5�

2
4 u2
v2
w2

3
5 = (j1 � j2)

2
4 2

1
�1

3
5 = (j1 � j2) � ~�:

This means that for some �xed i and k there are exactly n; (j = 1; : : : ; n),
di�erent index points from Pint lying on the line parallel to direction ~� =
[2 1 � 1]T . Since 1 � i; k � n, there are exactly n2 such lines. Consequently,
when P �

int is mapped by T into �Pint, this set will have n
2 elements, i.e. the
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corresponding SA will contain n2 PEs. The (x; y) positions of the PEs in
the SA are obtained according to composite mapping (S �H) as follows

p(i; j; k)
H
7�!p�(i+ 2j � 2; j; k � j + n)

S
7�!

�
x

y

�
=

�
k + n

k + i+ n� 2

�
: (3.5)

Communication links between the PEs are of near-neighbor type imple-
mented along the directions (2.5).

Having obtained PE positions, the next step is to �nd out the distri-
bution of A; B and C elements at the beginning of the computation in the
systolic array. Note that mapping of Pint into P �

int requires that the initial

computation space Pin has to be mapped, also. The new initial space P̂in,
is de�ned by P̂in(a) = f(i + 2j � 2; 0; k � j + n)j1 � i; j; k � ng; P̂in(b) =

f(0; j; k�j+n)j1 � j; k � ng; P̂in(c) = f(i+2j�2; j; 0)j1 � i; j � ng with the
periodicity of A, B, and C data items de�ned by a(i; j; k) � a(i+ n; j; k) �
a(i; j; k + n) � aik; b(i; j; k) � b(i; j; k + n) � bkj ; c(i; j; k) � c(i + n; j; k) �
c(i; j; k +n): Now, according to the timing function and equation (2.6), this
space is expanded as follows

P �

in(a) =f(i + 2j � 2; 3� i� j � k; k � j + n)j1 � i; j; k � ng

P �

in(b) =f(1 � k; j; k � j + n)j1 � j; k � ng

P �

in(c) =f(i + 2j � 2; j; n� i� 3j + 3)j1 � i; j � ng

:

If we now apply mapping S : P �

in 7�!
�Pin, we would obtain the initial

ordering of input elements in the SA according to (3.5). This array has n2

processing elements, but long execution time. Therefore we have to perform
time optimization. Optimization in time domain is performed as follows.
Timing function of the array obtained according to (3.5) is

t(i+ 2j � 2; j; k � j + n) = i+ 2j + k � 4: (3.6)

For some �xed i and k and for j := j and j := j + 1 according to (3.6) we
have that

�t = t(i+ 2j; j + 1; k � j + n� 1)� t(i+ 2j � 2; j; k � j + n) = 2: (3.7)

The above equality implies that data items enter the array in every second
time instance. To optimize time parameter of the array we have to achieve
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that data enter the array in consecutive time moments. Therefore we have
to reorder data distribution. We call this reordering a compression. The
compression is performed as translation of data item along the direction of
data 
ow ~e 2
 ; 
 2 fa; b; cg over index variable j. There are two things that
we should take care of during this compression:

i) two data items must not overlap

ii) no data item can enter the array before the one indexed by j = 1,
(i; k arbitrary).

To avoid this traps we perform the following analysis. Let (i; j1; k) and
(i; j2; k), j1 6= j2 be two arbitrary points. Suppose that after the translation
of data item indexed by (i; j2; k) for factor n (n is dimension of matrix) it
coincides now with data item indexed by (i; j1; k). In that case the following
is valid

t(i+j2�2; j2; k�j2+n)�n = t(i+2j1�2; j1; k�j1+n); i.e. n = 2(j2�j1):

This means that overlapping of data items can occur if n is even. Therefore
we have to make a di�erence when n is even and when n is odd. For the
sake of simplicity we introduce the following notation

�n =

�
n; when n is odd

n� 1; when n is even
:

Since in (3.7) �t = 2, data items are translated for a factor r�n, where
r 2 f0; 1g. The r is determined from the condition ii), i.e. from the inequality

t(i+ 2j � 2; j; k � j + n)� r�n > t(i; 1; k + n� 1):

Thus we obtain that r is the greatest integer from the set f0; 1g that satis�es
the inequality

�2(j � 1) + r�n < 0; if j = 1 then r = 0:

Now, the (x; y) positions of input data items at the beginning of the
computation are given by

a(i+ 2j � 2; 0; k � j + n)!

�
x

y

�
a

=

�
3 + n� i� 2j

n+ 2i+ 2j + 2k � 5

�
+ r�n

�
1

�1

�

b(0; j; k � j + n)!

�
x

y

�
b

=

�
k + n

n� 2j + 1

�
+ r�n

�
0
1

�

c(i+ 2j � 2; j; 0) !

�
x

y

�
c

=

�
n� i� 2j + 3
n� 2j + 1

�
+ r�n

�
1
1

�

(3.8)
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for i; j; k = 1; : : : ; n.

Equations (3.5) and (3.8) give new non{planar systolic array that imple-
ments Algorithm 1. Data distribution at the beginning of the computation
in this array is given in Fig.2, for n = 3.

Fig.2. Data distribution at the beginning of the computation
in the non-planar array synthesized by the described
procedure, for n = 3

4. Discussion

A comparative survey of the space-time parameters of the array ob-
tained by the modi�ed design procedure and the one obtained in [8] is given
in Table 1.

According to Table 1 we conclude the following. The total execution
time, Ttot, of the Algorithm 1 is identical for both arrays, but all other
parameters of the array obtained by the modi�ed synthesis procedure are
substantionally better than that of the array obtained in [8]. For example,
the number of PEs in the array synthesized in this paper is almost four times
less than the number of PEs in the array given in [8]. Let us note that all
other non{planar SAs can be synthesized using the proposed procedure.
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Table 1.
Performance measure SA obtained in [8] SA obtained in this paper

No of PEs 4n2 � 5n+ 2 n2

Ttot 3n� 2 3n� 2

Geometric area 4(n� 1)2 (n� 1)2

Chip area (2n� 1)(3n� 2) n(2n� 1)

Speedup� n
3

3n�2
n
3

3n�2

EÆciency n
3

(3n�2)(4n2�5n+2)
n

3n�2

AT (3n� 2)(4n2 � 5n+ 2) = O(12n3) (3n� 2)n2 = O(3n3)

AT 2 (4n2 � 5n+ 2)(3n� 2)2 = O(36n4) n2(3n� 2)2 = O(9n4)

�Execution time of matrix multiplication algorithm on uniprocessor system is taken to be

n3 time units. Duration of add{multiply operation is taken as a time unit
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