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A PROCEDURE FOR ANALYSIS OF NON-STATIONARY

HEATING STATES OF ACSR CONDUCTOR

Dragan Tasi�c

Abstract. One procedure for non-stationary states analysis of the ACSR

conductor heating, that can be applied to the larger cross-sections conductors,

is presented in this paper. Mathematical model is formed under assumption

that steel reinforcement is isothermal body. Additionally, it is assumed that

Joule losses in aluminum part of conductor are concentrated in their inside.

System of two di�erential equations, obtained under these assumptions, is

easy to solve numerically. By the introduction of one additional assumption,

a simpli�ed mathematical model is formed. Simpli�ed model could be solved

analytically, namely, analytical expression for calculation of temperatures in

the inside and on the surface of the conductor is obtained. This paper illus-

trates that although two time constants appear in the simpli�ed model, only

one is relevant for the transient heating process.

Key words: ACSR conductor, non-stationary heating states, time heating

constant

1. Introduction

Analysis of overhead power lines, and thereby ACSR conductors, non-
stationary states of heating is becoming more interesting recently, especially
from the aspect of real time control [1], [8]. Regardless relatively simple
geometry of conductors, their heating analysis mathematical models can be
very complicated, due to radial and axial change of temperature. Partial
di�erential equation, or a system of two of these equations in the case of
larger cross- section conductors, is gained even in case of negligible axial
temperature change.

In order to make analysis of conductor heating as simple as possible,
certain simpli�cations are introduced, such as treating of conductor as an
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isothermic object, with negligible radial and axial temperature change [1,3,4].
Mathematical models obtained in that way are relatively easy to handle, but
applicable only for small cross-section conductors. Explanation for this is
a very small temperature di�erence between the inside and the surface of
the conductor. In the case of large cross-section conductors, that di�erence
must be considered [8]{[11], which means that using of previously mentioned
simpli�cation, only approximate results can be obtained.

For this reason, a mathematical model for ACSR conductor's non-
stationary heating states analysis is formed. This model is composed of two
di�erential equations that can be easily solved by using numerical methods.

Analytical expressions for the temperature in the inside and on the
surface of the conductor are obtained after certain reductions made to the
previously formed mathematical model. Besides, this model enables under-
standing of in
uence of certain variables on the heating time constants which
are very important for the non-stationary state time of lasting.

2. Mathematical Model

It is obvious that the highest temperature in always is in the inside of
the conductor, and the lowest is on it's surface. It is important to know these
temperatures because they represent an interval of temperatures of all points
of a conductor. Radial thermal distribution analysis shows that thermal gra-
dient in the inside is negligible. Therefore is possible to treat conductor's
steel core, in thermal sense, like isothermic object, which simpli�es math-
ematical model. Further simpli�cation is made with a presumption that
aluminum part of Joule losses concentration in the inside of a conductor.

Analogous electrical circuit for steel core and surface temperature eval-
uation is shown in Fig. 1.

Joule losses PFe and PAl are functions of currents in steel and aluminum
part of a conductor, as well as corresponding temperatures

PFe =
�Fe[1 + �Fe(�Fe � 20)]

SFe
I2Fe; (1)

PAl =
�Al[1 + �Al(�Al � 20)]

SAl
I2Al; (2)

where: �Fe and �Al - electric resistivity of steel and aluminum at 20�C,
respectively, �Fe and �Al - electric resistivity temperature coe�cient of steel
and aluminum, IFe and IAl - currents in steel and aluminum, SFe - steel
cross-section, SAl - aluminum cross-section.
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Fig. 1. Analogous electrical circuits for steel core and surface temperature
evaluation;
PFe - Joule loss power on conductor's core,
PAl - Joule loss power in aluminum part of a conductor,
PS - solar absorptivity power,
RT - thermal resistivity of conductor's aluminum part,
RTcon, RTra - thermal resistivity representing convention and radiation,
CFe, CAl - thermal capacity of steel and aluminum part,
�Fe, �c, �a - temperatures of steel core, conductor's surface
and environment air.

Current intensities in steel and aluminum, IFe and IAl , can not be de-
termined exactly, considering variable conductor's temperature. Therefore,
as in the case of radial thermal distribution [10],[11], the following pair of
relations is used

IFe =I
RAl

RAl +RFe

; (3)

IAl =I
RFe

RAl +RFe

; (4)

where: RAl and RFe - electric resistivity of aluminum and steel, I - conduc-
tor's current intensity.

If aluminum part of a conductor is treated like a cylindrical object, Rt

is obtained from following expression:

RT =
1

2��Al
ln

rc
rFe

; (5)

where rc assigns conductor radius and rFe radius of steel core. In relation
(5) �Al is conductivity of a conductor's aluminum part, and for this coe�-
cient value of 2 W=Km can be assumed, like in radial thermal distribution
calculation [10].

Thermal resistivities RTcon and RTra are calculated from

RTcon =
1

kcon�dc
(6)

RTra =
1

kra�dc
(7)
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where kcon and kra are convective and radiative heat transfer coe�cients
and dc is conductor's diameter.

Convective heat transfer coe�cient kcon is obtained with Nusselt num-
ber (Nu) [11], [12]

kcon = Nu
�a
dc
; (8)

where �a is thermal conductivity of air.

Nusselt number is a function of Reynolds number, and its detailed eval-
uation is represented [11], [12]. It should be pointed out that kkon almost
does not depend on the temperature of a conductor. Due to this reason
RTcon may be treated as a constant value. Following relation can express

kra = 5:67 � 10�8"
(273 + �c)

4 � (273 + �a)
4

�c � �a
; (9)

where " is conductor's surface heat emissivity coe�cient.

From the previous relation it can be observed that kra depends on the
temperature of a conductor, which means that RTra is a function of that
temperature too.

In
uence of solar radiation, to the conductor's heating is previously fully
analyzed [11], [13]. In order to evaluate Ps, a presented procedure is applied
here [11].

Thermal capacity CFe and CAl are determined as

CFe(Al) = mFe(Al)cFe(Al) = 
Fe(Al)SFe(Al)cFe(Al); (10)

where 
 is density and c is speci�c heat of a material.

According to the electrical circuit shown in Fig. 1 following equations
can be written

PFe =CFe

d�Fe
dt

+
�Fe � �Al
0:5RT

; (11)

PAl +
�Fe � �Al
0:5RT

=CAl

d�Al
dt

+
�Al � �c
0:5RT

; (12)

�Al � �c
0:5RT

+ Ps =(�c � �a)
� 1

RTcon

+
1

RTra

�
; (13)

Starting from these equations, and considering (1), (2), (6), (7) and (9),
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the following set of two di�erential equations is obtained

d�Fe
dt

=
1

CFe

fBFe�Fe +
2

RT

�
a(273 + �c)

4 + b�c
�
�

2K

RT

+AFeg; (14)

d�c
dt

=

2

RT

�Fe +

�
BAl �

2

RT

��
a(273 + �c)

4 + b�c �K
�
+

2

RT

�c +AAl

CAl[4a(273 + �c)3 + b]
;

(15)

where:

AFe(Al) =
�Fe(Al)

SFe(Al)
(1� 20�Fe(Al))I

2
Fe(Al);

BFe(Al) =
�Fe(Al)

SFe(Al)
�Fe(Al)I

2
Fe(Al) �

2

RT

;

K = [kcon�dc�a + Ps + 5:67 � 10�4"�dc(273 + �a)
4]
RT

2
;

a = 5:67 � 10�8"�dc
RT

2
;

b = 1 +
kcon�dcRT

2
:

This set of equations, (14) and (15), which can be solved numerically,
are relevant for the conductor's cooling process as well, which acquires after
turning the power o� (IAl = IFe = 0).

3. Simpli�ed Model

In order to fully comprehend an in
uence of characteristic variables on
the transient heating process, it is necessary to make de�ning expressions
for RTra as simple as possible. This is accomplished by computing kra for
presumed medium temperature of a conductor (�med )

kra = 5:67 � 10�8"
(273 + �med)

4 � (273 + �a)
4

�med � �a
; (16)

where �med is some assumed temperature and �a is temperature of the air.

Calculated kra is a constant, which means that RTra is a constant too.
With this approach, the next system of di�erential equations is obtained

d�Fe
dt

=
1

CFe

�
BFe�Fe +

2C

RT

�c �
2D

RT

+AFe

�
; (17)

d�c
dt

=
1

CAlC

h�
BAlC �

1

RTCr

�
�c +

2�Fe
RT

+AAl

�BAlD +
�a + PsRTcr

RTcr

i
; (18)
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where

C =
2RTcr +RT

2RTcr

;

D =
RT

2

�
Ps +

�s
RTcr

�
;

RTcr =
RTconRTra

RTcon +RTra

:

Last system of equations can be solved analytically. After di�erentia-
tion, another set of equations is obtained

d2�Fe
dt2

� (a1 + b2)
d�Fe
dt

+ (a1b2 � a2b1)�Fe = b1c2 � b2c1; (19)

d2�c
dt2

� (a1 + b2)
d�c
dt

+ (a1b2 � a2b1)�c = a2c1 � a1c2; (20)

where

a1 =
BFe

CFe

;

b1 =
2C

CFeRT

;

c1 =
1

CFe

�
AFe �

2D

RT

�
;

a2 =
2

CAlCRT

;

b2 =
1

CAlC

�
BAlC �

1

RTcr

�
;

c2 =
1

CAlC

�
AAl �BAlD +

�a + PsRTcr

RTcr

�
:

Di�erential equations (19) and (20) can be solved separately, but their
characteristic equation is the same

k2 � (a1 + b2)k + (a1b2 � a2b1) = 0; (21)

with following solutions

k12 =
a1 + b2 �

p
(a1 + b2)2 � 4(a1b2 � a2b1)

2
: (22)

Solutions to (19) and (20), with steel core and surface starting temper-
atures (�Fe(0) and �c(0)), are

�Fe =�Fe1 +A1e
k1t +B1e

k2t; (23)

�c =�c1 +A2e
k1t +B2e

k2t; (24)
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where

�Fe1 =
b1c2 � b2c1
a1b2 � a2b1

;

�c1 =
a2c1 � a1c2
a1b2 � a2b1

;

A1 =
k2�Fe1 + (a1 � k2)�Fe(0) + b1�c(0) + c1

k1 � k2
;

B1 =�Fe(0) � �Fe1 �A1

A2 =
k2�c1 + (b2 � k2)�c(0) + a2�Fe(0) + c2

k1 � k2
;

B2 =�c(0) � �c1 �A2:

In equations (23) and (24) �Fe1 and �c1 show temperatures in the
inside and surface of conductor in steady-state.

4. Time Constants of Heating

Equation (21) has two real and negative solutions. If they were positive,
the temperature would inde�nitely increase during the heating time, which
would be impossible. Analysis of coe�cients a1, b1, a2 and b2 shows that a1
and b2 are negative and (a1+b2)

2 � 4(a1b2�a2b1). Therefore, characteristic
equation solutions are

k1 '
a1b2 � a2b1
a1 + b2

; (25)

and
k2 ' a1 + b2:

It is already pointed out that both of solutions are negative, but it is
also j k1 j�j k2 j. Therefore, time constants are

�1 =
1

j k1 j
; (27)

and

�2 =
1

j k2 j
: (28)

Considering conductor's dimensions and possible environment condi-
tions, analysis shows that time constant �2 is signi�cantly smaller than �1.
�1 has a value of a minute, and �2 of a second. This means that transient
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process that depends on �2 is very quickly �nished. Time characteristic of
conductor's heating is mostly determined with time constant �1. It is also
important that A1 and A2 modulus are much greater than B1 and B2. Us-
ing expressions for a1, b1, a2 and b2, time constant �1 and time constant of
ACSR conductor heating � are

� = �1 =
(BFeCAl +BAlCFe)C �

CFe

RTcr

4C

R2
T

�

�
BAlC �

1

RTcr

�
BFe

(29)

This relation enables performing of analysis of an in
uence of certain
variables to the value of time constant of heating of ACSR conductor.

Time heating constants are obtained [11], when mathematical model
is formed with presumption of isothermal character of steel and aluminum
part of a conductor. This approach also leads to a conclusion that one of
time constants is negligible, which means that heating process is practically
described with only one time constant [14].

Relations from (20) to (26) may be used for evaluating of the tempera-
ture during the process of cooling (IFe = IAl = 0). In this case, it is clear
that �Fe(0) and �p(0) represent temperatures of steel core and on the surface
of a conductor in the moment of a cooling process beginning.

5. Test Example

Proposed procedure enables evaluating time change of temperature in
the inside and on the surface of ACSR 490=65 mm2 conductor, with current
intensity of I = 895 A, environment temperature �a = 10�C, wind velocity
v = 0:6 m=s, attack angle �v = 20�, heat radiative emissivity " = 0:3 and
solar radiation absorptivity coe�cient �s = 0:5.

Based on calculated results, change of the temperature in the inside
of the conductor for the �rst 120 minutes, is shown in Figure 2. Figure 2
shows that results obtained from exact and simpli�ed model match very well.
After 120 minutes temperature has reached these values: �Fe = 72:143�C,
�c = 69:7�C. They are very close to the temperature values in steady state:
�Fe1 = 72:84�C, �c1 = 70:35�C.

If these results are compared to ones obtained from steady-state temper-
ature disposition analysis, they can be considered as correct. That way, for
the same conditions, applying the same procedure [10,11], we obtain for the
temperature in the inside 71:82�C and for the one on the surface 70:08�C.
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Fig. 2. Time change of temperature of ACSR 490=65 mm2 conductor
with I = 895 A, v = 0:6 m=s and with considered solar radiation.

These values can be considered as absolutely correct. They show that pre-
viously exposed procedure for heating analysis gives results with negligible
error, which favors its application.

Fig. 3. ACSR 490=65 mm2 conductor time heating constant
as a function of current intensity.

Fig. 3 and 4 show that time heating constant increases with growth
of current intensity, and declines with increase of wind velocity. Fig. 4
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Fig. 4. ACSR 490=65 mm2 conductor time heating constant
as a function of wind velocity.

shows that this reduction may be signi�cant. In the case of current intensity
change, time constant �2 almost did not change, and it's value was �2 =
8:71 s. When current intensity 895 A, and wind velocity changed from
0.6 m=s to 5 m=s, �2 changed from 8.71 s to 8.695 s. According to this
can be concluded that �2 is practically insensible to the change of current
intensity and ambient conditions.

6. Conclusions

A procedure for analysis of non-stationary states of large cross-section
conductor heating is presented in this paper. Introducing simpli�cations
about radiative heat transfer, analytical expressions for evaluation of the
temperature in the inside and on the surface of a conductor are obtained.
Comparing results obtained from the numerically solved set of two di�eren-
tial equations with ones gained from simpli�ed model, leads to a conclusion
that they are practically the same, which justi�es application of the simpli-
�ed model. A fact that these expressions are relatively simple and easy to
use in engineering practice favors previous statement.

Although two time heating constants appear in the simpli�ed mathe-
matical model, only one of them is important for a lasting time of transient
process.
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