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AND/EXOR MINIMIZATION OF SWITCHING FUNCTIONS
BASED ON INFORMATION THEORETIC APPROACH
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Vasily Cheushev and Svetlana Yanushkevich

Abstract. In modern circuit design, concept of Shannon decomposition of
switching functions is widely used. On the other hand, in Information Theory,
Shannon entropy as a quantitative measure of information is a key notion. In
this paper, we relate these two concepts, belonging to di�erent areas, into
an approach to the minimization of switching functions in Exclusive-or Sum-
Of-Products (AND/EXOR) form. The Shannon decomposition and Davio
decomposition for AND/EXOR expressions are investigated and interpreted
in Information Theory terms. Thank to that, we have proposed an entropy-
based strategy for minimization of switching function. We have provided a
comparison and an experimental veri�cation of this strategy with some known
heuristic minimization strategies using benchmarks. In some cases our pro-
gram InfoEXOR have shown extremely better results. Moreover, information
theory notation of classical decomposition of switching functions gives new
point of view to the existing design styles.

Key words: switching functions, minimization, decomposition, entropy,
AND/EXOR expressions.

1. Introduction

In 1938 Shannon introduced the method for decomposition of switching
functions, well known as Shannon expansion. In 1948 he suggested a measure
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to represent an information in numerical value, so called Shannon entropy.
We summarized here an approach to merge both notions and direct it toward
one of circuit design problems, namely minimization of AND/EXOR forms
of switching functions.

The study of entropy based strategy for minimization of switching func-
tions is based on previously obtained results in AND/OR Decision Trees
(DTs) design [2], [5], [7], [8], [13].1 In our investigation we focus on the
minimization of AND/EXOR expressions. Recently, there is a growing in-
terest in CAD of AND/EXOR circuits. Implementation of AND/EXOR
circuits often results in a more economical realization of the circuit and is
often more easily tested. This is particularly true for applications like error
control, arithmetic circuits, and encrypting schemes [3], [9], [10]. However,
the known optimization strategies on AND/OR DTs cannot be directly used
to optimize of AND/EXOR expressions.

Motivated by these reasons, we address to design of DT with nodes
of three types: Shannon (S) positive Davio (pD) and negative Davio (nD)
based on information theoretical approach. We consider the following prob-
lem: given a switching function, �nd a quasi-minimal AND/EXOR expres-
sion using S; pD or nD expansion.

Our approach revolves around choosing the "best" variable and "best"
expansion type for any node of DT. It means that in any step of DT de-
sign, we have an opportunity to choose a variable and a type of expansion
based on entropy criterion. The result of the DT design is so-called Free

Pseudo Kronecker DT. The term 'free' means that at every DT level di�er-
ent variables and type of nodes can occur. For some functions free DTs and
DDs allow an exponential reduction with respect to the number of nodes
compared to ordered ones [16], [4], [6], [11], [17]. So, using entropy-based
minimization criterion we solve at the same time two problems: variable
ordering and choice of expansion for every node of tree. Optimized DT may
be represented in the analytical form: each path from the root to a terminal
node corresponds to a term in the AND/EXOR expression.

The rest of paper is organized as follows. In Section 2. we summa-
rize the necessary de�nitions. Section 3. introduces the information model
of Shannon and Davio decomposition. Section 4. describes an algorithm
to minimize AND/EXOR expression. In Section 5. we present results to
validate our approach. Currently we have InfoEXOR package to realize
entropy-based strategy for S, pD, nD expansion and their combinations.

1There have been developed many applications in circuit design based on Shannon'
information theory. As an examples of successful results and non-solved problems, we
refer the reader to [18] and [14].
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Section 6. concludes the paper.

2. Basics

Let us formulate the task to be solved as follows. Given a switching func-
tion f of n variables fromX = fx1; x2; � � � ; xng in the form of truth table (the
example of truth table for function Misex24 from LGSynth91-benchmarks is
given in Table 1). Let us �nd a quasi-minimal AND/EXOR expression for
given function. We solve this task through conversion of the truth table into
Free Pseudo Kronecker DT, which corresponds to AND/EXOR expression
for f .

Table 1
Truth table of function Misex24

x1 x2 x3 x4 f x1 x2 x3 x4 f

0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 1 0

0 0 1 0 0 1 0 1 0 0

0 0 1 1 0 1 0 1 1 1

0 1 0 0 0 1 1 0 0 0

0 1 0 1 1 1 1 0 1 1

0 1 1 0 0 1 1 1 0 0

0 1 1 1 1 1 1 1 1 0

2.1 Decision trees

We consider DT as directed acyclic graph Tree = fN;V g with nodes
set N and edges set V . Each node is labeled by possible expansion ! with
respect to arbitrary variable x. To design DT, we consider tree types of
expansion (types of nodes): Shannon, Positive Davio and Negative Davio.
We denote a set of expansion types by 
 = fS; pD; nDg and assign a pair
(x; !) to a node, where x 2 X and ! 2 
. Each node has one incoming
edge and two outgoing edges, which correspond to decomposition step of
switching function f into cofactors with respect to type of expansion. A
terminal edge is labeled with leaf value and has no successors, a nonterminal
edge has two successors.

De�nition 1: Free DT is designed if each variable is encountered at most
once on each path from the root to a terminal node, and variables order may
be di�erent for each path.

So, unlike to ordered DTs, in free DTs any variable may be chosen for
any node of tree.
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De�nition 2: Pseudo Kronecker DT is designed by arbitrary choosing
any of S, pD or nD expansion for each node.

In this paper we consider Free Pseudo Kronecker DTs as general class.
In experiments we investigated with our package InfoEXOR some proper
subsets of this class, namely Shannon DTs, �xed polarity Reed-Muller DTs,
and Pseudo Reed-Muller DT. For example, Free Pseudo Reed-Muller DT is
designed by arbitrary choosing of any variable and any of positive Davio or
negative Davio expansion for each node. For more detailed de�nitions see,
for example, [16].

2.2 Information measures

In our DT design strategy we use some basic concepts of information
theory, namely, entropy, conditional entropy and mutual information (see,
for example, [1]). Here we are focused on mathematical aspects of these
concepts.

In order to quantify the content of information revealed by the outcome
for �nite �eld of events A = fa1; a2; � � � ; ang with the probabilities distribu-
tion fp(a1); p(a2); � � � ; p(an)g, Shannon introduced the concept of entropy.
Entropy of �nite �eld A is given by

H(A) = �

nX

i=1

p(ai) � log p(ai); (1)

where logarithm is in base 2. Note that entropy H(A) never be negative and
is equal to zero if and only if A contains one event only.

Let A and B are �nite �elds of events with probabilities distribution
fp(ai)g; i = 1; 2; � � � ; n, and fp(bj)g; j = 1; 2; � � � ;m, respectively.

Conditional entropy of A with respect to B is de�ned by

H(AjB) = �

nX

i=1

mX

j=1

p(ai; bj) � log
p(ai; bj)

p(bj)
: (2)

Mutual information between two �nite �elds A and B is

I(A;B) = H(A)�H(AjB): (3)

In our task we deal with two �nite �elds: set of values of switching
function f for di�erent combinations of variables values (we name such com-
bination as pattern) and set of values of arbitrary variable x. We use (1)
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- (3) to calculate information estimations with respect to function and its
variables.

We calculate the probability, for example, p(f = 0) as follows:

p(f = 0) = kjf=0=k;

where kf=0 is the number of patterns, for which the switching function
takes the value 0 and k is total number of patterns (for completely speci�ed
switching function k = 2n). Other probabilities are calculated in the similar
way.

Example 1: Consider the Misex24 function (Table 1). The entropy
H(f) = �4=16 � log

4=16�
12=16 � log

12=16 = 0:81 bit/pattern. The conditional
entropy of function with respect to variable x2 is H(f jx2) = �7=16 � log

7=8�
1=16 � log

1=8�
5=16 � log

5=8�
3=16 � log

3=8 = 0:75 bit/pattern. Thus, mutual
information between f and x2 (on the other words - information, which is
carried out by x2 about f) is 0.81-0.75 = 0.06 bit/pattern.

3. Information Model of Recursive Decomposition
of Switching Functions

Instead giving the information-theoretic interpretation of S, pD, and
nD decomposition in a formal way, we cover the main points in an simpli�ed
and uni�ed way in order to help the reader to get an impression and quick
understanding of the entropy based strategy in DT design.

Consider the designing of DT for switching function f from information
theory point of view (Fig. 1). We use two information measures, conditional
entropyH(f jTree) and mutual information I(f ;Tree) to describe DT design
process.

Initial state of this process when we have not DT is characterized by
maximum value for conditional entropy

H(f jTree) = H(f); T ree = f�;�g: (4)

Nodes are recursively attached to DT by using the top-to-down strat-
egy. In this strategy entropy H(f jTree) of function reduces, information
I(f ;Tree) increase because variables carry out information about the func-
tion. Any intermediate state can be described in information-theoretical
terms by equation

I(f ;Tree) = H(f)�H(f jTree): (5)
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We maximize the information I(f ;Tree) (or minimize the entropy
H(f jTree) that the same) on each step of decision tree design as describe in
subsection 3.4.

Final state of decision tree is characterized by

H(f jTree) = 0() I(f ;Tree) = H(f); (6)

i.e. Tree represents switching function f (see Fig. 1).

Fig. 1. Information-theoretical model of iterative function
decomposition trough DT design

3.1 Information model of expansion of
a switching function

We consider the DT design process as recursive decomposition of switch-
ing function. A step of this recursive decomposition corresponds to the ex-
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pansion of switching function f with respect to variable x. From information-
theoretical position, we say that pair (x; !) conveys information about func-
tion f .

Initial state of the expansion ! 2 fS; pD; nDg can be characterized by
entropy H(f) of function f , �nal state - by conditional entropy H!(f jx).
Likely (5), the !-expansion of function f with respect to variable x is de-
scribed as follows

I!(f ;x) = H(f)�H!(f jx): (7)

Note that if for some node H!(f jx) = 0 then it means that outgoing
branches of this nodes point to leaves.

Now, let us discuss in details the information measures for S, pD and
nD expansion.

3.2 Information notation of S expansion

AND/OR trees (also known as Shannon trees) are used as appropriate
data structures for a wide variety of CAD problems (logic synthesis, ver-
i�cation, diagnosis, testing). Entropy based strategy for Sum-Of-Product
minimization that based on AND/OR tree design considered in [7], [8]. This
strategy based on S-expansion

f = x � fjx=0 _ x � fjx=1; (8)

where fjx=a is cofactor of f , i.e. f with x replaced by a 2 f0; 1g.

In this paper we use S-expansion in the form of Exclusive-or Sum-Of-
Products

f = x � fjx=0 � x � fjx=1: (9)

The designed Shannon tree is mapped into SOP or ESOP expression
as follows: a leaf with value 0 is mapped into f = 0 and with value 1 -
into f = 1; a non-terminal node is mapped into f according to (8) or (9)
respectively.

De�nition 3: Equation

HS(f jx) = pjx=0 �H(fjx=0) + pjx=1 �H(fjx=1) (10)

represents an information measure of Shannon expansion for a switching
function f with respect to variable x.

Lemma 1: Information measure of S-expansion is equal to conditional
entropy H(f jx)

HS(f jx) = H(f jx): (11)

For proofs of lemma and following theorem see [12].
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3.3 Information notation of pD and nD expansion

As well known, a switching function f can be represented as pD expan-
sion

f = fjx=0 � x � (fjx=0 � fjx=1)

or nD expansion
f = fjx=1 � x � (fjx=0 � fjx=1):

Those follow from S expansion because x � fjx=0 and x � fjx=1 are disjoint.

De�nition 4: Equations

HpD(f jx) = pjx=0 �H(fjx=0) + pjx=1 �H(fjx=0 � fjx=1); (12)

HnD(f jx) = pjx=1 �H(fjx=1) + pjx=0 �H(fjx=0 � fjx=1) (13)

represent information measures of Positive Davio expansion and Negative
Davio expansion of a function f with respect to variable x.

Theorem 1: Information merit (e�ciency) to choose pD or nD nodes
for DT design in comparison to S expansion are calculated as

4IpD = pjx=1 � (H(fjx=1)�H(fjx=0 � fjx=1)) (14)

and
4InD = pjx=0 � (H(fjx=0)�H(fjx=0 � fjx=1)) (15)

respectively.

3.4 Information criterion for DT design

The main properties of information measures introduced above are (a)
recursive character like S, pD and nD expansion in classical notation, and
(b) possibility to choose decomposable variable and expansion type based
on their information measure. We will show that recursively process allow
to order variables in DT based on information criterion which can be near
optimal order.

Entropy based optimization of DT design can be described as optimal
(with respect to information criterion) node selection process. The path of
DT starts from the node and �nished by terminal node. Each path corre-
sponded to the term in �nal expression.

De�nition 5: The criterion to choose decomposition variable x and ex-
pansion type ! is that the conditional entropy of the function with respect
to this variable has to be minimal:

H!(f jx)! min;8(x; !) 2 X � 
: (16)
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Note, for completely speci�ed switching function we use the property
that p(x = 0) = p(x = 1) =1 =2. Thus, we can rewrite information measures
de�ned above as follows: HS(f jx) = 1=2(H(f0) + H(f1)), H

pD(f jx) =
1=2(H(f0)+H(f2)), andH

nD(f jx) = 1=2(H(f1)+H(f2)), where f0 = fjx=0,
f1 = fjx=1 and f2 = f0 � f1.

In order to build Free Pseudo Kronecker DT we choose for each node
the argument (i.e. pair (x; !)) of minimum from (H(f0) + H(f1);H(f0) +
H(f2);H(f1) +H(f2)) as shown in Example 2.

Fig. 2 illustrates recursive process of decision tree design.

Fig. 2. Entropy based minimization of switching function
via recursive DT design: subsequent node attaching

Now, based on introduced formal models we able to describe our algo-
rithm and program InfoEXOR.

4. Algorithm

In this section entropy based algorithm for minimization of AND/EXOR
expressions is described. A sketch of algorithm is given in Fig. 4. In this
algorithm the ordering restriction is relaxed. This means that (i) each vari-
able appear once on each path and (ii) the order of variables along each path
may be di�erent.
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Input Switching function f = f(x1; x2; :::; xn), set of expansion types 

Output Tree: Free DT, AND/EXOR expression

Comments
(i) Function f and its cofactors are given by truth tables
(ii) Notation 'Tree ' means that tree is attached by node or leaf
(iii) X denotes a set of variables which are not included in current path
(iv) For Pseudo Kronecker and Kroneker DT: 
 = fS; pD; nDg,

for pseudo Reed-Muller and Reed-Muller DT: 
 = fpD; nDg,
for AND/OR DT: 
 = fSg

InfoEXOR(f)
f
if(f = c, where c = const) then f
Tree leaf(c);
return;

g
for (8x 2 X) f
Determine the functions fjx=0, fjx=1 and fjx=0 � fjx=1;

Compute the entropy H(fjx=0), H(fjx=1) and H(fjx=0 � fjx=1);
Compute information estimations for S, pD and nD expansion

accordingly (10), (12) and (13) respectively;

g
Choose variable x and expansion type ! 2 
 where H!(f jx)! min;
Attach node assigned by couple (x;!) to Tree
Tree node(x; !);

Determine the functions fl and fr for left and right edges

according to chosen expansion:

S pD nD

fl = fjx=0 fl = fjx=0 fl = fjx=1

fr = fjx=1 fr = fjx=0 � fjx=1 fr = fjx=0 � fjx=1

Recursively construct sub-trees for functions fl and fr:
Treel = InfoEXOR (fl);
Treer = InfoEXOR (fr);
return; g

Fig. 3. Sketch of the algorithm for entropy based switching
function minimization.

Example 2: Consider design of Free Pseudo Kronecker Tree for func-
tion Misex24 (Table 1). Tree design process and information measures are
illustrated in Fig. 4.

Step 1. Choose variable x4 and S expansion for root node according to min-
imal entropy HS(f jx4) =

1=2(H(f0) +H(f1)) = 0:5 bit/pattern.
Select function fl = fjx4=0 as current one. This function is
constant 0. Select function fr = fjx4=1.
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Step 2. Choose variable x3 and pD expansion for next node according
to minimal entropy HpD(f jx3) = 1=2(H(f0) + H(f2)) = 0:405
bit/pattern. Select function fl = fjx3=0 as current one.

Step 3. Choose variable x1 and S expansion for next node according to min-
imal entropy HS(f jx1) =

1=2(H(f0) +H(f1)) = 0:5 bit/pattern.
For the last node we do not calculate an information measure. All
the others edges point to leaves.

The corresponded to constructed DT Pseudo Reed-Muller expression is:
f = x4x2 � x4x1x3.

Fig. 4. Step by step Free Pseudo Kronecker Tree design for function
misex24 using information measures (in bit/pattern)

5. Experiments

Our InfoEXOR program in C++ implements the described above al-
gorithm to design Free Pseudo Kronecker DTs and any it's subset namely
Shannon, Reed-Muller and Pseudo Reed-Muller trees.

In experiments we study on several LGSynth912 benchmark functions
three types of DTs:

2http://www.cbl.ncsu.edu/pub/Benchmark dirs/LGSynth91
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(i) RM DTs based on assigning the pD or nD expansion for nodes and
�xing the expansion type for each variable;

(ii) Pseudo RM DTs based on an arbitrary choosing any of the pD or nD
expansion for each node;

(iii) Pseudo Kronecker DTs based on an arbitrary choosing any of S, pD or
nD expansion for each node.

All experiments have been performed on Pentium 100 MHz with 48
MBytes of main memory. In all Tables with experimental results T=L=t
denotes the number of terms T , number of literals L and run time t in CPU
seconds.

5.1 Fixed polarity RM expressions

In the �rst series of experiments we studied the criterion H!(f jx) !
min for ! 2 fpD; nDg and �xed expansion type for each variable. The
results have been compared with FDD - functional decision diagram ap-
proach for minimization of �xed polarity RM expressions, reported in [3]
(HP Apollo series 700 workstation). The fragments of this results are listed
for single-output benchmarks in Table 2 (I/O no. is the number of in-
put variables/name of output) and for multi-output benchmarks in Table 3.
The experiments show that we can obtain the result for the functions much
faster in comparison to FDD. Our program run times takes into account
pre-processing time.

Table 2
Comparison of Drechsler et al. results for FPRM minimization

and the results of InfoEXOR (FPRM) for single-output benchmarks

FDD [3] InfoEXOR (FPRM)

I/O no. T=t T=t

rd53 5/2 5/0.4 5/0.001

5xp1 7/1 12/1.8 12/0.001

z4 7/2 9/1.8 9/0.009

rd73 7/2 7/1.8 7/0.001

f51m 8/4 7/3.6 7/0.051

9sym 9/1 173/8.1 173/0.12

life 9/1 100/9.2 100/1.06

sao2 10/2 52/16.3 52/3.83

Total 365/43.0 365/5.073

5.2 Pseudo Kronecker expressions

In a �nal series of experiments we studied the criterion H!(f jx) !
min for ! 2 fS; pD; nDg. We compared the minimization results with
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EXORCISM-MV3 [15] for minimization of ESOP expressions on benchmarks
(Table 4). Our method is much faster and the average number of literals is
fewer, in contradiction to the number of terms. It should be pointed out that
Pseudo Kronecker expressions are the proper subset of ESOP expressions.

Table 3
Comparison of Drechsler et al. results for FPRM minimization

and the results of InfoEXOR (FPRM) for multi-output benchmarks

FDD [3] InfoEXOR (FPRM)

I/O T=t T=t

rd53 5/3 20/0.5 20/0.001

rd73 7/3 63/2.3 63/0.001

rd84 8/4 107/5.5 107/0.096

dist 8/5 185/12.5 185/5.32

log8mod 8/5 53/6.5 53/0.310

sao2 10/4 100/48.1 100/1.270

Total 528/75.4 528/6.988

Table 4
Comparison of Song and Perkowski results obtained via EXORCISM-MV3

program for ESOP minimization and InfoEXOR for minimization
of Pseudo-Kronecker expressions

EXORCISM-MV3 [15] InfoEXOR (PSDKRO)

I/O T=L=t T=L=t

bw 5/28 22/319/1.1 22/65/0.002

rd53 5/3 14/57/0.4 20/45/0.002

squar5 5/8 19/87/0.8 23/56/0.002

con1 7/2 9/37/0.1 14/42/0.81

inc 7/9 26/176/1.7 41/158/0.94

5xp1 7/10 32/170/2.2 45/189/2.08

rd73 7/4 35/188/4.2 63/189/0.02

adr4 8/5 31/144/1.7 34/106/0.04

misex1 8/7 12/82/0.2 15/59/1.32

mlp4 8/8 60/395/16.1 97/466/0.18

rd84 8/4 59/322/20.2 107/352/0.15

9sym 9/1 51/426/4.3 173/636/0.17

Total 401/2559/55.2 654/2357/5.716

6. Concluding Remarks

The contribution reported here is the development of information theo-
retical approach to �nd quasi-minimal AND/EXOR expressions of switching
functions. The minimization is maintained via free DTs. In order to identify
this results, we investigated the problem from the side of variables ordering
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and choosing the "best" node type from S, pD or nD for variables, with
respect to the minimum entropy criterion. The experiments show that in
many cases our program produces results, which are comparable with the re-
sults produced by the programs based on other methods, but it works much
faster than analogs.
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