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GENERAL METHOD FOR DESIGNING AND SIMULATING
OF RESISTIVELY TERMINATED LC LADDER FILTERS

Refet Ramiz and Herman Sedef

Abstract. In this work, a new design method has been developed for the
low-pass �lter (LPF) circuits by using the Nth Bernstein polynomials to meet
the requirements on the 
atness of pass-band and slope at the cut-o� fre-
quency. Almost all the methods utilized in the �lter design are uni�ed under
a framework to obtain good results in both amplitude and phase respects.
A simple but general synthesis method which is based on a new basic cell is
given to simulate the circuits for controlling the realization of the designed
�lter on the basis of the requirements. Di�erent type of �lters which were not
obtained since today are developed by this new method.

1.Introduction

There are two important points which puts forward the quality of a
�lter; (i) Designing a required type of charactersitic, (ii) Realizing the �lter
on the basis of the requirements. In the literature, there are lots of discussion
on obtaining required type of �lters. In general the authors are focused on the
amplitude response function of the �lters and accepted the phase responses
born by these amplitude response functions. The o�ered methods are mainly
interested in with the 
atness of the pass-band or the slope at the cut-o�
frequency. Here, a new design method is o�ered to obtain good results in
both amplitude and phase respects simultaneously.

In this work, low-pass �lter (LPF) design is considered as a basic unit
for the uni�cation of the ladder type LC �lters with a resistive terminations
at either end or both ends. The amplitude response function, A(!) is taken
into consideration and expressed for the physically realizable, lossless �lter
circuits together with the phase response function and delay function.
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The transfer function of a LPF can be given as follows

H(j!) =
1

r(!) + js(!)
(1)

where r(!) and s(!) are even and odd function of ! respectively. The
transfer function H(j!) can also be expressed as an amplitude and phase

H(j!) = jH(j!)jej�(!) (2)

Here the phase response function is

�(!) =arg[H(j!)]

=� arctan
hs(!)
r(!)

i (3)

and the corresponding group delay function can be expressed as

D(!) =� d

d!
f�(!)g

=� d

d!
farg[H(j!)]g

(4)

The amplitude characteristic of a LPF with no �nite zero can be ex-
pressed in the following form

A(!) =
1p

1 + FN (!2)
(5)

where A(!) = jH(!)j and FN (!
2) is a positive real function of !2.

In literature, FN (!2) is obtained by the two di�erent approaches:

(I) FN;I(!
2) = P 2

N (!) where PN (!) is either odd or even function of
!,

(II) FN;II(!
2) = QN(!

2) where QN (!
2) is an even function of !.

Low-pass �lters using the polynomials Butterworth, Chebyshev, Her-
mite [7], Legendre [7], Ultraspherical [11] etc. are based on the (I)-type of
approach. On the other hand the �lters developed by Papoulis [13], Halpern
[10], Rakovich [14], Djurich [8], etc. and the �lters using Jacobi polynomials
[6] are based on the (II)-type of approach.

Most of the �lter design methods utilizes the polynomial degree N to
control the characteristic features, while some use the two parameters N , �
and the rest utilize the three parameters N , �, �. In this work, the function
FN (!

2) is produced by using the N th Bernstein polynomial BN (f ;x) [2]. So
that the characteristic features will be control not only by polynomial degree
N but also by polynomial itself.
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2. Design of the LC Ladder LPF Circuits
by Using the Bernstein Polynomials

2.1 Bernstein Theorem

According to the Bernstein theorem, if f(x) is bounded on the interval
[0; 1], then [1],

lim
N!1

BN(f ;x) = f(x) (6)

at any point x 2 [0; 1] at which f(x) is continuous. Here the N th (N � 1)
Bernstein polynomial, BN (f ;x) is de�ned for the bounded f(x) on [0; 1] as
follows [2],

BN (f ;x) =
NX
k=0

f

�
k

N

��
N

k

�
xk(1� x)N�k (7)

provided that BN (f ; 0) = f(0) and BN (f ; 1) = f(1).

In equation (7), f(k=N) is the sampled value of the function f(x) at
the point (k=N) for k = 0; 1; 2; : : : ; N which forms uniform sampling in the
(k=N �N) plane.

2.2 Bernstein Polynomials in !�Domain

In order to utilize (7) in the LPF circuit design, one should transfer the
N th Bernstein polynomial BN (f ;x) de�ned in the interval 0 � x � 1 to the
Bernstein polynomial BN(f ;!) de�ned in the interval �1 � ! � 1. For this
purpose the following x = g(!) transformation is used [2]

g(!) =
1

2
(1� !) (8)

Substituting (8) into (7), one has the transformed Bernstein polynomial
BN (f ;!) as follows [2]

BN (f ;!) =
1

2N

NX
k=0

fk

�
N

k

�
(1� !)k(1 + !)N�k (9)

Here all f(k=N) values that forms a heap and named as a sampling
vector f , will be denoted as fk hereafter for simplicity,

f = [fk] (10)
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2.3 Determination of the Sampling Vector f
for the New Type of Circuits

By this new method, both (I) and (II)-type of approach can be realized
by using only the N th Bernstein polynomial, BN (f ;!). In order to design
a LPF circuit by using the (I)-type of approach, one should de�ne FN (!2)
function as follows [5]

FN;I(!
2) = B2

N (f ;!) (11)

Similarly, in order to design a LPF circuit by using the (II)-type of
approach, the transformation ! ! !2 should be taken into account in the
Bernstein polynomial given in eq. (9), so that

FN;II(!
2) = BN (f ;!

2) (12)

To determine fk parameters for the new type of circuits, one should
apply the passive �lter realizibility conditions and also take into considera-
tion that amplitude response is A(!) = 1=

p
2 at the cut-o� frequency. As a

consequence of this, fk parameters can be de�ned as follows [5]

fk =

�
1 for k = 0

R(k;N)(�1)k for k > 0
(13)

here are R(k;N) = R(N � k;N) for the (I)- type of approach, R(k;N) 6=
R(N � k;N) for the (II)-type of approach and R(k;N) is a positive real
value. One should note that to obtain equal or better characteristic then
the Butterworth type LPF, R(k;N) � 1 should be chosen. Beside this, in
order to design a LPF by using the (I)-type of approach, one should take into
consideration the properties in (13) together with the limitations given below
for the extremum (!ex) and zero (!0) positions of the Bernstein polynomial

0 � !ex � cos(
�

2N
)

0 � !0 � cos(
�

N
)

(14)

Also, the Bernstein polynomial should be de�ned so that its values are
within the limits at the extremum positions where it is also a requirement
for the passive �lter realizibility

�1 � BN (!ex) � 1 (15)
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Table 1. Limitations on fk Parameters (N : 2! 4)

N f1 f2 f3 f4

2 �3 � f1 � �1

3 �5 � f1 � �1

4 �3 � f1 � �1 1 � f2 �
7� 4f1

3

�7 � f1 � �3
f1(f1 + 2)

3
� f2 �

7� 4f1

3

The above mentioned limitations puts the constraints on fk parameters
given in Table 1 for N : 2! 4. For the greater N , such as N = 5 there will
be f1, f2 parameters e�ectively, to the extend f1; f2; : : : ; fk parameters will
be e�ective where k = N=2 for N even and k = (N � 1)=2 for N odd.

This new method also gives an opportunity to control the A(!) values
at ! = 0 by means of controlling the Bernstein polynomial with the following
expressions

BN (0) =
1

2N

NX
k=0

fk

�
N

k

�
: (16)

Again, the slope at the cut-o� frequency (here it is taken as !c = 1)
can be de de�ned by means of Bernstein polynomial degree N and its f1
parameter as follows

�(N; f1) = arctan

��N(1� f1)

4
p
2

�
(17)

where f1 can immediately be determined for the required slope at the cut-o�
frequency. So, to be able to design a low pass �lter, one should evaluate the
fk parameters subject to the required characteristic properties. Once the
�lter is designed, the designer can simulate the circuit accordingly.

3. Simulation of the LC Ladder LPF Circuits

To simulate the resistively terminated LC ladder LPF circuits designed
on the basis of the speci�cations given in section-2, the general synthesis
method using a new basic cell is considered [15]. By using this method,
the resistively terminated LC ladder LPF circuits are converted into the in-
ductorless active circuits involving only second-generation current conveyors
(CCII�), grounded resistors and grounded capacitors.

The second-generation current conveyors are introduced in 1970s �rst
and then various new active-RC circuits have been presented for many ap-
plications. One of these applications is a simulation of a grounded or 
oated
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inductor. Due to the all theoretical and experimental works the CCIIs are
attractive elements in current-and voltage-mode operations of the circuits.

In the area of active �lter design, inductor simulation has been of con-
siderable interest. The advantage of designing active �lters by simulating
the inductors of a passive RLC structure include not only low component
sensitivities but also the extensive knowledge of RLC design. Moreover, re-
sistively terminated LC ladder �lters derived from passive synthesis methods
are known as the circuits with minimum sensitivity. The simulated �lters
also inherit this property if the simulators have good sensitivity performance.
Beside this, the �lters employing all grounded components are suitable for
integrated circuit technology.

3.1 The Basic Cell

The proposed basic cell is composed of inverting and non-inverting type
of conveyors (CCII�) shown in Figure 1.

Fig. 1. Second-generation current conveyor

Terminal characteristics of CCII can be represented by the following
hybrid matrix [15] 2

4 iy
vx
iz

3
5 =

2
4 0 0 0
kv 0 0
0 ki 0

3
5 =

2
4 vyix
vz

3
5 (18)

Here vx, vy, vz and ix, iy, iz represents the voltages and currents of x�,
y�, and z� terminals respectively. The kv and ki are voltage and current
gains. Here the voltage gain is kv = 1 and the current gain is ki = �1 for
inverting type of current conveyor (CCII�) or ki = +1 for non-inverting
type of current conveyor (CCII+).

In case of the CCIIs are ideal, ith basic cell can be represented by the
following short-circuit admittance parameters2

4 Î1iÎ2i
Îi

3
5 =

2
4 0 0 Ĝbi

0 0 �Ĝbi

Ĝai �Ĝai 0

3
5 =

2
4 V̂1iV̂2i
V̂i

3
5 (19)

where Ĝai and Ĝbi are grounded conductances of basic cell.
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(a) (b)

Fig. 2. (a) Basic cell symbol. (b) Equivalent CCII� circuit of basic cell.

3.2 Floating Immitance Simulator Using Basic Cell

Designer can simulate ith 
oating admittance function, Yi in Figure 3a
by the circuit of Figure 3b which is obtained from basic cell by connecting
grounded admittance, Ŷi to the its ith terminal.

(a) (b)

Fig. 3. (a) ith 
oating branch. (b) Simulated ith 
oating branch.

The short-circuit admittance matrices of the circuits given in Figure 3a
and 3b can be written as

[yij] =

�
y11 y12
y21 y22

�
= Yi

�
+1 �1
�1 +1

�
(20)

[ŷij] =

�
ŷ11 ŷ12
ŷ12 ŷ22

�
=

ĜaiĜbi

Ŷi

�
+1 �1
�1 +1

�
=

kmi

Ŷi

�
+1 �1
�1 +1

�
(21)
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By equating [yij ] to [ŷij ],

Ŷi =
ĜaiĜbi

Yi
=

kmi

Yi
(22)

This condition can easily be satis�ed by taking the following equality
for Ĝai and Ĝbi

ĜAi = ĜBi = Ĝai =
1

Rai

=
p
kmi (23)

4. Design Formula For
The New Type LPF Circuits

Formula based on the amplitude response in the design of LPF circuits
with 2, 3, 4 element are given in this section. Similarly the other formula set
can be obtained based upon the phase or delay characteristics of the �lter.

4.1 Bernstein Polynomials for the (I)-type of Approach

Bernstein polynomials for N = 2; 3; 4 can be obtain by using the eq. (9)
above together with the speci�cation of fk parameters given in eq. (13)

B2(f ;!) =
1

2

�
(1� f1)!

2 + (1 + f1)
�

B3(f ;!) =
1

4

�
(1� 3f1)!

3 + (3 + 3f1)!
�

B4(f ;!) =
1

8

�
(1� 4f1 + 3f2)!

4 + (6� 6f2)!
2 + (1 + 4f1 + 3f2)

�

By using the above polynomials one can obtain the BN (f ;!) values at
! = 0 by the following expressions

B2(f ; 0) =
1

2
(1 + f1)

B3(f ; 0) = 0

B4(f ; 0) =
1

8
(1 + 4f1 + 3f2)

4.2 Bernstein Polynomials for the (II)-type of Approach

In order to obtain (II)-type of Bernstein polynomials for N = 2; 3; 4 one
should consider the eq. (7) together with the eq. (12) and speci�cation of
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fk parameters given in eq. (13)

B2(f ;!
2) =

1

4
[(1� 2f1 + f2)!

4 + (2� 2f2)!
2 + (1 + 2f1 + f2)]

B3(f ;!
2) =

1

8
[(1� 3f1 � 3f2 + f3)!

6 + (3� 3f1 � 3f2 + 3f3)!
4

+ (3 + 3f1 � 3f2 � 3f3)!
2 + (1 + 3f1 + 3f2 + f3)]

B4(f ;!
2) =

1

16
[(1 � 4f1 + 6f2 � 4f3 + f4)!

8 + (4� 8f1 + 8f3 � 4f4)!
6

+ (6� 12f2 + 6f4)!
6 + (4 + 8f1 � 8f3 � 4f4)!

2

+ (1 + 4f1 + 6f2 + 4f3 + f4)]

Similiarly, by using the above polynomials one can obtain the BN (f ;!
2)

values at ! = 0 as follows

B2(f ; 0) =
1

2
(1 + 2f1 + f2)

B3(f ; 0) =0

B4(f ; 0) =
1

8
(1 + 4f1 + 6f2 + 4f3 + f4)

4.3 Example: LC Ladder LPF Circuit Design for N=4

Here, 4-element LC ladder LPF circuit is considered to show the unique-
ness of the design method. To determine the samples fk for a given N , a
designer needs to know the extremum and zero value positions of the Bern-
stein polynomial besides the required cut-o� slope . For N = 4, extremum
and zero value positions can be given as follows [5]

!ext;1 =0

!ext;2 =

s��� 3f2 � 3

1� 4f1 + 3f

���
!0;1 =

s
�3 + 3f2 + 2

p
2 + 4f21 � 6f2

1� 4f1 + 3f2

!0;2 =

s
�3 + 3f2 � 2

p
2 + 4f21 � 6f2

1� 4f1 + 3f2

(24)

Considering a chosen cut-o� slope as given in (17), one can make a
trade-o� between the peak values of ! = 0 and ! = !ex;2 given in (24) by
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means of f2-parameter with provided that it remains within the limit values
[5].

Some fk-parameters are obtained for the new type of circuits together
with the cut-o� slopes by using the expressions given for determining the fk
parameters and given in Table 2.

Table 2. fk coe�cients and cut-o� slopes of low-pass �lters

Filter Type (n = 4) f0 f1 f2 f3 f4 �

Butterworth 1 �1 1 �1 1 �54:735�

2nd Ass.Legendre 1 �2 5/2 �2 1 �64:761�

1st Ass.Legendre 1 �5=2 10/3 �5=2 1 �67:998�

Legendre 1 �4 6 �4 1 �74:207�

Bernstein -1 1 �5 9 �5 1 �76:737�

Bernstein -2 1 �6 8 �6 1 �78:737�

Chebyshev 1 �7 35/3 �7 1 �79:975�

Corresponding F4(!
2) polynomials are given in Table 3.

Table 3. F4(!2) Polynomials

Filter Type F4(!2)

Butterworth F4(!2) = !8

Papoulis (FUKADA) F4(!2) = 6!8 � 8!6 + 3!4

Bernstein-1 F4(!2) = 36!8 � 72!6 + 48!4 � 12!2 + 1
Chebyshev F4(!2) = 64!8 � 128!6 + 80!4 � 16!2 + 1

2nd Ass. Legendre F4(!2) =
1

256
(1089!8 � 1188!6 + 390!4 � 36!2 + 1)

1st Ass. Legendre F4(!2) =
1

64
(441!8 � 588!6 + 238!4 � 28!2 + 1)

Legendre F4(!2) =
1

64
(1225!8 � 2100!6 + 1110!4 � 180!2 + 9)

Bernstein-2 F4(!2) =
1

64
(2401!8 � 4116!6 + 1862!4 � 84!2 + 1)

Amplitude responses, A(!) of the LPFs produced by using the polyno-
mials in Table 3 are given in Figure 4 for the normalized cut-o� frequency
!c = 1.

Also, the LC ladder LPF circuit in Cauers's �rst form are considered
as in Figure 5 for N = 4 and the corresponding L, C values for normalized
LPF circuits are given in Table 4. Beside this, the Phase responses of the
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Fig. 4. Amplitude Responses of LPFs for N = 4

Fig. 5. Resistively terminated LC ladder Low-pass Filter (N = 4)

Table 4. L, C values corresponding to the ladder realization

Filter Type L1 C2 L3 C4

Butterworth 1.531 1.577 1.082 0.383

2nd Ass. Legendre 1.528 1.717 1.374 0.571

1st Ass. Legendre 1.522 1.757 1.461 0.667

Legendre 1.438 1.897 1.531 0.981

Bernstein-1 0.935 2.678 1.274 1.330

Bernstein-2 1.904 1.519 1.741 1.208

Chebyshev 1.045 2.530 1.228 1.723

designed �lters are given in Figure 6 for the comparison. The related delay
charactersitics of the low-pass �lters are given in Figure 7 too.
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Fig. 6. Phase responses of the LPFs.

Fig. 7. Delay functions of the LPFs.

For the cut-o� frequency, fc = 10 kHz (!c = 2�104 rad/s) and load
impedance of RL = 1 k
, the L;C values can be given as in Table 5. The
corresponding amplitude responses are given in Figure 8.
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Table 5. L, C values for fc = 10 kHz (!c = 2�104 rad/s), RL = 1 k


Filter Type L1 C2 L3 C4

Butterworth 24.37 mH 25.10 nF 17.22 mH 6.10 nF

2nd Ass. Legendre 24.32 mH 27.33 nF 21.87 mH 9.09 nF

1st Ass. Legendre 24.22 mH 27.96 nF 23.25 mH 10.62 nF

Legendre 22.89 mH 30.19 nF 24.37 mH 15.61 nF

Bernstein -1 14.88 mH 42.62 nF 20.28 mH 21.17 nF

Bernstein -2 30.30 mH 24.18 nF 27.71 mH 19.23 nF

Chebyshev 16.63 mH 40.27 nF 19.54 mH 27.42 nF

Fig. 8. Amplitude Responses of LPFs (N = 4, fc = 10 kHz, RL = 1 k
.)

4.4. Simulation of the LC Ladder LPF Circuits

For the LC ladder LPF circuit given in Figure 5, the admittance func-
tions (Yi) for the all 
oating branches can be given as follows

Y1 =
1

sL1

Y2 =sC2

Y3 =
1

sL3

Y4 =sC4

YL = GL =
1

RL

By using eq. (22), all the 
oating admittance functions can be converted
into the grounded admittance functions

Ŷ1 =
km1

Y1

Ŷ2 =Y2

Ŷ3 =
km3

Y3

Ŷ4 =Y4

ŶL = YL
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The LPF circuit with grounded admittance functions is given in Figure
9.

Fig. 9. LPF Circuit all 
oating admittance functions converted
into grounded admittance functions.

By interchanging the admittance functions with the resistors and ca-
pacitors due to the relations given above, the inductorless, simulated LPF
circuit can be given as in Figure 10.

Fig. 10. Simulated Low-Pass Filter Circuit.

The kmi's parameters can be chosen arbitrarily. If we choose km1 =
km3 = 10�8 S2, it gives

R̂x1 = R̂x3 =
1p
kmi

= 10 k


which are internal resistors used in equivalent circuit of basic cell (Figure
2b). This choice of kmis also gives the parameters of the simulated circuit
of Figure 10.
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5. Conclusion

Here all the �lter design methods are uni�ed under a framework. By
this new method, designer can construct the amplitude response function
A(!) using the requirements for the pass-band characteristics and slopes at
the cut-o� frequencies. This method gives an opportunity to control the
pass-band speci�cations while the cut-o� slope is constant. For the greater
N where it means greater number of fk-parameters, to control the peak
values and their positions in the pass-band characteristics becomes easier.
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