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ALGORITHM FOR NON-MINIMUM PHASE PLANT

CONTROLLER DESIGN BASED ON CHEBYSHEV'S

POLYNOMIAL

Dragan Anti�c, Predrag Stankovi�c

and Miomir Stankovi�c

Abstract. This paper presents the controller design for non{minimum phase
plant control. The design is being performed in time domain, by applying
convolutinal integrals and Chebyshev orthogonal polynomials. The suggested
solution e�ciency is veri�ed by digital simulation results.

1. Introduction

The control of non-minimum phase system remains an important prob-
lem in control theory. A system is a non-minimum phase one if its transfer
function contains zeroes in the right half plane or time delay or both. Oth-
erwise a system is a minimum phase one. In any system that needs to be
controlled, the existence of phase lag is an undesirable characteristic. Simple
self-tuning control and model-reference control fail on non-minimum phase
plants. Also, conventional variable structure systems, with large and discon-
tinuous signals are not satisfactory. One of the methods to tackle the prob-
lem is to introduce nonlinear control laws designed in time domain where the
control signal has desired form. That is the reason why we introduce poly-
nomial structure system algorithm based on the theory of approximation for
control of non-minimum phase systems. Controller algorithm requires mi-
crocomputer's module with computing software, D/A converter and output
driver-stage.

In this paper, we discuss polynomial controller algorithm and its imple-
mentation in control systems with impulse response describing plant. First,
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an approximation of plant impulse response with suitable polynomial degree
was performed, and then the controller was designed so that the performance

index ISE, described as
R t
0
e2(�)d� , is minimized. The goal was to make the

error signal equal to the value of Chebyshev polynomial with suitable degree
in (0; 1) time interval during the system operation. The reason for Cheby-
shev polynomial implementation is their value on the interval (-1, 1) being
closest to zero, compared to the other polynomials with the same degree
from the continuous functions class.

A control loop which contains a plant described by a model, given in a
polynomial form of a impulse response, and a controller given by a polyno-
mial form was considered.

In this paper, one approach for the control system design, already men-
tioned, will be pointed out in details. Also, the mentioned approach e�-
ciency will be veri�ed using digital simulation. Plant impulse response is
approximated with the P�degree polynomial. Controller impulse response
is approximated with the R�degree polynomial. The wanted error elimina-
tion dynamics is given as a time function. The convolution integral of the
previously mentioned impulse responses is approximated with the Chebyshev
polynomial. The zeroes of the polynomial controller obtained in such manner
are dynamically shifted, depending on the actual value of the controlled vari-
able. The geometric representation would be polynomial controller zeroes
moving along the spiral paths on the roller with angle o�set being exactly the
variation of the output signal. Controller gain consists of two components:
one of them is approximative output function and the other is approximative
error signal function.

As a result of the suggested algorithm implementation, non-minimum
phase plant response is obtained using digital simulation, with nearly expo-
nential form, ending with the virtual singularity very close to the balance
state, having zero error in the steady state.

2. Bases of the Chebyshev's Polynomials

Orthogonal polynomials are good approximation elements. Chebyshev's
polynomials have the extreme features, meaning within its interval [�1; 1] of
de�nite, they are closest to zero, compared to the other monocle polynomials
of the same degree. The �rst class Chebyshev polynomials can be generated
in the following manner

Tk(x) =
1

2

[k=2]X
i=0

(�1)i(k � i� 1)!

i!(k � 2i)!
(2x)k�2i; for k = 1; 2; ::: (1)
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where To(x) = 1.

If a function is given by series expand on

f(x) = ao + a1x+ a2x
2 + :::; (2)

with respect to the practical appliance, function values with certain accuracy
are computed using polynomial

Pn(x) = a0 + a1x+ a2x
2 + :::+ anx

n; (3)

A potential series ecconomisation presents a degree reduction of above
mentioned polynomial with a little accuracy aggravating. It is accomplished
by orthogonal polynomials, mostly, Chebyshev or Legendre polynomials.
The term, xk is possible to express via the Chebyshev-base in this man-
ner

xk =
1

2k�1

[k=2]X
i=0

�
k

i

�
1

1 + �k;2i
Tk�2i; for k 2 N (4)

where T0 = 1. Thus, polynomial Pn(x) becomes

Pn(x) = c0T0(x) + c1T1(x) + :::+ cnTn(x): (5)

Adopting only the �rst m+ 1 members, (m < n) we obtain

Qm(x) = c0T0(x) + c1T1(x) + :::+ cmTm(x); (6)

that represents the approximation polynomials Pn(x) in all algebra polyno-
mial set with degree no greater then m.

3. The Controller Design

The control loop with the polynomial controller and the non-minimum
phase plant is shown in the Figure 1.

Fig. 1. The control loop.
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The �rst step in the polynomial controller design is obtaining a priori

information about control plant, which is obtained from any identi�cation
method. If a priori information is given as a transfer function, we get the
plant weight function, !p(t), by �nding inverse Laplace transformation. By
Taylor's expanding !p(t) in a vicinity of point t = 0, we get the plant
weight function in potential series form. We "cut o�" the series to obtain
an approximation polynomial with desireble approximate impulse response.
If the degree is too high, then the ecconomisation of the approximation
polynomial to the lower degree is being performed. Further, we work with
weight function obtained in this manner, and let us denote it as !pl(t). The
system output is determined by convolution integral of the controlled plant
impulse response !pl(t) and the control signal m(t), that is

c(t) =

Z t

0

m(�)!p(t� �)d� (7)

Let the desired dynamic vanishing of the error signal ed(t) be given by

ed(t) = e�t=T (8)

where T is the time constante that describes response "speed"; naturally, it
should match dynamicall properties of controlled plant in order to avoid too
high control signal level and too large degree of approximation polynomials.
At present, the desired system output is given by cd(t) = 1 � exp(�t=T ).
The �rst output signal approximation is given by t=T . Due to that reason,
the normalized output that is the whole error signal variable the segment
should be devided on K same subsegments. On the base of that, it follows

ck(t) =

Z t

0

mk(�)!p(t� �)d� =
k

6
(1� e�t) (9)

The error signal changes as �t=T ; the smaller signal error, the more exact
it is

mk(��=T ) = mk(e); for k = 0; : : : ;K � 1;
k

K
< ck(t) <

k + 1

K
(10)

In this manner is introduced control signal to error signal dependence. The
control signal will be supposed in form

mk(t) =

RX
i=1

rk;i(�
t

T
)i (11)
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where rk;i are unknown controller parameters. The control polynomialmk(t)
contains single zero at zero, which ensure zero-control signal in the steady
state, in a case of plant with astatizm. If that plant has no astatizm, then,
its introduction is needed as controller component; but in the design, it is
being considered as a plant component. The result of convolutional integral
(9), we also presumpt in polynomial form with the least degree 2 (two).
Although, desired response approximation polynomial (obtained by adopting
�rst primary N members of ckd(t) = (k=K)(1 � exp(�t=T )) series expand)
contains a member with the lowest degree being 1, in this way, after "cutting
o�" convolution integral result (9) to the degree of polynomial approximation
of ckd(t), controller parameter determining is impossible. To overcome this
problem, we will eliminate the �rst member in series expand ckd(t) in the
following manner. We will utilize the extremal property of the one: in the
set of monical polynomials with degree no greater then n, the polynomial
Tn(t)=2

n�1 deviates the least from zero within the interval (�1; 1). The
controlled plant output, we will present in the following manner

ckd(t) =
k

6
(
1

T
t�

1

2T 2
t2 +

1

6T 3
t3 � :::) + �k

Tn(t)

2n�1
(12)

where �k is constante which should be selected so the member (k=6)t van-
ishes. We have chosen the added Chebyshev polynomial degree n, that it
possesses the lowest degree member of forms �nt. The Chebyshev polyno-
mial degree, n, that satis�es this request, has form n = 4p + 3; p 2 N0.
Thus, we achieved the �rst member vanishing with the minimum degrada-
tion polynomial approximation of the desired output. We may conclude
that (�k=2

n�1)100% is a percent degradation on the interval upper bound
(k=K; (k + 1)=K).

By settling we get

�k =
2n�1

(K + 1� k)nT
(13)

We repeat this procedure for every k 2 (0; 1; : : : ;K � 1). The control error
signal is being limited at value �1=K. Let us expound convolutional integral
from (9) more delicately

ck(t) =

Z t

0

mk(�)!p(t� �)d�:

With regard to (11) and by introduction of the weight function approxima-

tion in polynomial form !p(t) =
PP

j=0 pjt
j we get

ck(t) =

Z t

0

RX
i=1

rk;i(�
�

K
)i

PX
j=0

pj(t� �)jd� (14)
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i.e.

ck(t) =

RX
i=1

PX
j=0

jX
l=0

rk;ipj(
1

K
)i
�
j

l

�
(�1)i+j�l

i+ j � l + 1
ti+j+1 (15)

by overgrouping index p = i+ j and p � j + 1 we get

ck(t) =

PX
j=0

R+jX
p=1+j

jX
l=0

rk;p�jpj(
1

K
)p�j

�
j

l

�
(�1)p�l

p� l + 1
tp+1 (16)

where we reduce down-triangle matrix in sets overcovered down-triangle ma-
trices. Let us perform the preliminary expression in the next manner

ck;q(t) =

R+qX
p=1+q

PX
j=0

jX
l=0

rk;p�jpj(
1

K
)p�j

�
j

l

�
(�1)p�l

p� l + 1
tp+1; for p � j + 1

(17)
By taking q = 0, we adopt the �rst down-triangle matrix from the set of
down-triangle matrices

ck;0(t) =

RX
p=1

PX
j=0

jX
l=0

rk;p�jpj(
1

K
)p�j

�
j

l

�
(�1)p�l

p� l + 1
tp+1; for p � j + 1 (18)

It is possible to express cak(t) as cak(t) = cak;q(t) =
PP+2

j=2 cak;q;jt
j for

q = 0; : : : ; P for q = 0, from (12). By comparing coe�cients at algebra
potentia in the equation, we get the system of linear equation (presented by
the �rst down-triangle matrix) that has controller parameters as unknown
variables. The linear equations system has form

PX
j=0

jX
l=0

rk;p�jpj(
1

K
)p�j

�
j

l

�
(�1)p�l

p� l + 1
= cak;0;j; for p = 1; : : : ; R (19)

The expanded form of the preliminary system (15) is given as

Mrk = cak;0 (20)

where

M =

2
666666664

�
0:5p0
K

0 � � � 0

0:3_3p1
K2

�
0:1_6p1
K

0:3_3p0
K2

� � � 0

...
...

. . .
...

R�1P
l=0

(�1)R�l

R�l+1

�
R�1
l

�pR�1
K

R�2P
l=0

(�1)R�l

R�l+1

�
R�2
l

�pR�2
K2 � � � (�1)R�1p0

(R+1)KR

3
777777775
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rk =

2
664
rk;1
rk;2
...

rk;R

3
775 cak;0 =

2
664

cak;0;2
cak;0;3

...
cak;0;R+1

3
775

In this manner we get control signal polynomials mk(t), k 2 (0; 1; : : : ;
K�1). We may factore polynomials and restitute dependence between con-
trol signal and error signal on the base of appropriate zeroes. In this manner
we get control signal polynomial m(t), respectively, m(e) to be keeping with
above mentioned considersing. The controller gain consists of two compo-
nents: one of them is approximative output function and the other is ap-
proximative error signal function which is given by interpolating gains that
are obtained by factorization of polynomials mk(t); k 2 (0; 1; :::;K � 1) in
form G

Q
j(e � ej). The controller gain rises at slowing error signal where

stationary state is guaranteed for �nite time. The approximation error looks
round in the control dynamic speed and in the transient process form which
slightly deviates to the exponential form.

4. An Example of the Design and
Digital Simulation Results

Let us consider non{minimum phase plant described by transfer func-
tion

Wp(s) =
s� 1

s(s+ 2)
;

where responsive weight function is the

!p(t) = 1:5e�2t � 0:5:

By expanding in Taylor series we get

!pl(t) = 1� 3t+ 3t2 � 2t3 + t4 � 0:40t5 + 0:133t6 � 0:03809t7 + : : : ;

By choosing output dynamics and by expanding one in Taylor series we get

c(t) = 1� e�6t = 6t� 18t2 + 36t3 � 54t4 +
324

5
t5 �

324

5
t6 + : : : ;

Let us presumpt control action in form (11), for T = 1=6s that is

mk(t) =

RX
i=1

rk;i(�6t)
i
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It is needed to add the 7-th degree Chebyshev polynomial due to vanishing
the �rst member in series c(t)

T7(t) = �7t+ 56t3 � 112t5 + 64t7

On the basis of (11) and (20) by factoring is obtained control polynomial
mk(e)

mo(e) =4130e(e � 0:2159)(e � 0:4850)(e � 0:735)(e � 0:9145)(e � 1:076)

m1(e) =800e(e � 0:37)(e � 0:65)(e � 0:845)(e � 1:06)(e � 1:234)

m2(e) =218e(e � 0:53)(e � 0:81)(e � 1:055)(e � 1:22)(e � 1:396)

m3(e) =80e(e � 0:69)(e � 0:97)(e � 1:215)(e � 1:38)(e � 1:556)

m4(e) =37e(e � 0:85)(e � 1:13)(e � 1:375)(e � 1:54)(e � 1:716)

at

M =

2
6666666666664

�0:1 0 0 0 0 0

0:1
1

75
0 0 0 0

�
1

20
�

1

100
� 1

500 0 0 0

�
1

50

1

250

3

2500

1

3125
0 0

�
1

150
�

1

750
�

1

2500
�

1

6250
�

1

18750
0

0:0019046
1

2625

1

8750

1

21875

1

43750

1

109375

3
7777777777775

By performing approximative dependence by means of least square
method between gain, zeroes of controller and output signal, �nally com-
mand signal is obtained in form

m(t) = (�
1

0:0018883 + 0:03590(r(t) � je(t)j)2

+
1

0:0002532883 + 50jelim(t)j
)e

� (jelim(t)j � 0:23 � 0:57c(t))(jelim(t)j � 0:51 � 0:57c(t))

� (jelim(t)j � 0:77 � 0:52c(t))

� (jelim(t)j � 0:93 � 0:52c(t))(jelim(t)j � 1:1� 0:53c(t))

where

elim(t) =

8><
>:

e(t); for je(t)j <
1

K
1

K
; for je(t)j �

1

K
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a output signal from the limiter introduced in loop of the error signal. A
mentioned nonlinearity saturation type is introduced which limits the ab-
solute value error introduced to slow control signal dynamics which is de-
signed in parts for signal error change of �1=K. The approximative de-
pendence is performed in two steps. The �rst step is obtaining output-
error gain dependence in form of 1=(a + c(t)) + 1=(b + e(t)) in �ve discrete
boundary points. The second step is obtaining polynomial controller zeroes-
output signal dependence by means of least square method based on pairs
(�j;k; j=K); j; k = 1; 2; 3; 4; 5, where �j;k k-th zero in j-th polynomial.

We are performed control system digital simulation which includes the
suggested polynomial controller and non-minimum phase plant in the case
acting Hevisade signal and superimposed interference in forms 0:1(h(t �
2) � h(t � 3)) to the input. Digital simulation results, step response and
control signal is shown in Figures 2 and 3, respectively. On the basies of
system response from the Figure 2 we may conclude that system has desired
dynamics. Besides, the output system without undershoot.

Fig. 2. Time response of the system with suggested controller.

5. Conclusion

Non-minimum phase plant control is realized based on the application of
the Chebyshev orthogonal polynomials. The polynomial controller algorithm
is developed, and then, on the example of non-minimum phase plant its
application has been exposed in detail. The e�ciency of suggested solution
is veri�ed by results of digital simulation. The suggested control type is
achieved desired dynamics and eliminated undershoot.
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Fig. 3. The control signal.
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