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CONTROLLER
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and Ljubi�sa Draganovi�c

Abstract. Suitable structure of digital process control is proposed and the
optimal setting of controller parameters is accomplished by minimizing the
prescribed integral performance index, which ensures a strictly aperiodical
closed-loop system step response. The proposed design procedure is intended
for a wide class of slowly varying processes that may be characterized by
the steady-state gain, one time constant, and transport lag. The inuence
of transport lag on the speed of system response is analyzed. The results of
the analytical design are presented in the form suitable for a straightforward
microcontroller implementation.

1. Introduction

A large number of applications has already appeared for the control
of a variety of slowly varying processes that don't interact strongly with
other processes. These are, typically, special purpose applications for which
a microcontroller-based single-loop system has its stand-alone hardware and
software. There are also general purpose microcontroller applications for
which a degree of adjustment or programmability is required to match the
needs of special processes. The conventional proportional-integral-derivative
(PID) digital control laws have been applied in the direct-digital-control
(DDC) of typical slowly varying processes (temperature, level, pressure, ow,
etc.) or even of relatively fast dynamic variables (e.g., voltage of a DC
generator, speed and angular position of the output shaft of a controlled
electrical drive) involving processors having limited computing capability
and memory [1]. With generally satisfactory performance being achieved
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by properly-tuned PID-DDC controllers, there has been little incentive to
apply more sophisticated control laws. Namely, certain powerful methods of
modern control theory have not attracted much attention of process-control
engineers.

A digital computer was initially introduced into process control to ad-
just an analogue controller setpoint, and then gradually moved toward DDC
while keeping a complete set of analogue control for backup. Consequently,
it was natural to write programs for digital control algorithms that simulate
conventional analogue P, PI, and PID controllers. Nevertheless, digital con-
trol algorithms possess more exibility then analogue control for di�erent
control structures that comprise main feedback, minor local control loops,
cascade compensation, and feedforward. Moreover, due to the ability of con-
temporary microcontrollers, the conventional digital control laws are often
combined in real time with auxiliary control functions: the acquisition of
measuring data, estimation of state variables, on-line identi�cation of plant
model, noise �ltering, etc. Recently, autonomous intelligent methods (model
reference adaptive control, fuzzy logic, neurocontrol, and genetic algorithms)
have been introduced to process control to achieve more sophisticated control
schemes that reveal more or less a degree of arti�cial intelligence [2].

A comparison of the digital P, PI, and PID control laws with their ana-
logue equivalents was conceived in papers published in the early stages of
DDC. In the conventional digital PID algorithms, the P, I, and D actions
are, as a rule, made autonomous although they are dependent on the length
of sampling period [3]. Unlike the continuous-time control in which high-
frequency noise is usually �ltered out, such noise may cause low-frequency
uctuations in digital systems [4]. The versions of digital control laws, es-
sentially similar to their analogue PID equivalencies but with some modi�-
cations and improvements, have been proposed [3].

Di�erent tuning rules for industrial digital PID controller have been
developed [5-7]. It is not surprising that over 90 percents of industrial con-
trollers are of PI type. Over the years, there are many of well-known formu-
las derived to tune PI and PID controllers, as the Ziegler-Nichols [8], re�ned
Ziegler-Nichols [9], Dahlin [10], and their modi�cations that were derived to
tune PI and PID digital controllers [5].

This paper presents an analytical procedure for adjusting P, I, and D
gains in the PID- DDC controller for a wide class of typical processes that
have their transfer functions characterized by a steady-state gain factor, one
time constant, and a transport lag. The tuning formulas presented in this
paper are derived by minimization of the prescribed performance index so
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that the calculated values of controller parameters may be considered opti-
mal. The procedure is applied to the appropriate system control structure
which has recently been practiced in the real-time control of both processes
and speed- and position-controlled electrical drives [11].

Since a portion of information is lost owing to the sampling process,
it is predetermined that the digital version of the PID control law will not
behave as well as its analogue equivalent, unless the sampling period is in�n-
itesimal which, under some circumstances, is not economical and desirable
for sampled-data control systems [5]. Digital systems, on the other hand,
enable a considerable exibility to the type of algorithms that can be used
to apply new control theories to real-time process control systems and to
exploit software exibility while keeping as much as possible to a minimum
any disadvantages of digital control.

2. Process Control with
PID-DDC Algorithm

The structure of the process control system with PID-DDC control law
is shown in Fig. 1. To avoid sudden changes in control variable u(k) and its
incremental value �u(k) when the set point is changed, the reference signal
r(k) is included only in the I action, whereas the P and D actions are replaced
from the main loop into the local minor loops of the system. Furthermore,
local loops make controlled variable y(k) less sensitive with respect to the
measuring noise and external disturbance v(t). If the system plant possesses
the astatism (e.g., the plant transfer function has a single or double pole
at the origin of s plane), as in the case of positioning servomechanism, the
proportional local loop moves the pole from the origin and thus enables the
inclusion of integral term before the point where the disturbance acts. Due
to this term, the steady-state value of controlled variable becomes invariant
to a constant or a slowly varying disturbance v(t) [11].

The digital PID control law in the system of Fig. 1 may be implemented
in its velocity (incremental) form as

�u(k) =Kp[c(k � 1)� c(k)] +Ki[r(k)� c(k)]

+Kd[2c(k � 1)� c(k � 2)� c(k)]
(1)

or in its position form as

u(k) = �Kpc(k) +Ki

kX
i=0

[r(k)� c(k)]�Kd[c(k) � c(k � 1)] (2)
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Fig. 1. Structure of the process control system with digital PID algorithm

where y(k) and r(k) are sampled-data of the plant output and setpoint,
respectively, while �u(k) = u(k)�u(k�1) represents the incremental change
of the control variable u(k). Coe�cientsKp,Ki, andKd appearing in (1) and
(2) are, respectively, the proportional, integral, and derivative gains. The
incremental form (1) enables an easier control of the wind-up problem [5,7]
and it is applied when the motor element (or actuator) within the continuous
portion of the system possesses an integral acting behavior. Moreover, in
the design of positioning servomechanisms, the velocity form was used to
derive an intermediate control variable proportional to the speed of output
shaft. The variable is then used to design nonlinear control laws that act in
regimes where certain system components saturate [11].

3.Optimal Setting of
Controller Parameters

The continuous portion of the process control system of Fig. 1 comprises
a digital-to-analog converter (D/A) and the system plant that includes the
actuator (or driver), process, and transducer of controlled variable. This por-
tion also includes the transport lag Tc owing to the analogue-to-digital and
digital-to-analogue conversion times and the microcontroller computational
time.

Under the known circumstances regarding the linear regime of opera-
tion, the digital-to-analogue converter may be treated as the zero-hold circuit
having the transfer function

Gh(s) = Kh
1� e�Ts

s
(3)

where Kh is the gain factor and T is the sampling period.
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In the linear regime, the actuator may be assumed to have a su�ciently
large bandwidth, i.e., it may be described by the pure adjustable gain Ka.

The development of process model is more frequently based on the pro-
cess step response characterized by the steady-state gain, one time constant,
and deadtime. Hence, for typical process control problems (e.g., tempera-
ture, level, ow, pressure, etc.), the process transfer function may be fairly
well approximated by

Gpr(s) = Kpr
1

Tprs+ 1
e��s (4)

where the steady-state gain Kpr, the process time constant Tpr, and the
transport lag � (process deadtime) can readily be determined by simple
experiment called "tangent method" [5] or by using the experimental mea-
surements and an appropriate identi�cation program package (toolbox).

Denoting by Gp(s) the transfer function of continuous portion of the
system in Fig. 1, we obtain

Gp(s) = KhKaKpr
1� e�Ts

s

1

Tprs+ 1
e�Tds (5)

where Td = Tc + � denotes the total transport lag within the closed main
loop of the system.

Using the modi�ed Zm�transform [7,12], for Td < T , the corresponding
pulse transfer function is

Gp(z) =Z
h
Gh(s)s

�TdsKaGpr(s)
i

=(1� z�1)KhKaKprZm

h 1

s(Tprs+ 1)

i
m=1�Td=T

=K
(1�AB)z � (1�B)A

z(z �A)

(7)

where
K = KhKaKpr; A = e�T=Tpr and B = e�Td=Tpr :

According to the system block diagram of Fig. 1, the system open-loop
pulse transfer function is derived as

W (z) =
Kiz

z � 1

zGp(z)

z + [zKp +Kd(z � 1)]Gp(z)
(8)
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and thus the system closed-loop pulse transfer function becomes

C

R
(z) =

W (z)

1 +W (z)
=

Kiz
2Gp(z)

f(z)
(9)

where

f(z) = z(z � 1) + [Kpz(z � 1) +Kd(z � 1)2 +Kiz
2]Gp(z) (10)

After substituting from (6) into (10), the characteristic function may be
reduced to the form

f(z) =
1

z(z �A)

�
z4 + a3z

3 + a2z
2 + a1z + a0

�
(11)

with

a3 =� (1 +A) + (1�AB)K(Kp +Ki +Kd) (12a)

a2 =A� (1�AB)K(Kp + 2Kd) + (B � 1)AK(Kp +Ki +Kd)
(12b)

a1 =(1�AB)KKd � (B � 1)AK(Kp + 2Kd) (12c)

a0 =(B � 1)AKKd (12d)

By summing equations (12), one obtains a3 + a2 + a1 + a0 = �1 + (1�
A)KKi or, according to (11), f(1) = KKi.

For the step input R(z) = z=(z� 1), Z�transform of the error signal in
the system of Fig. 1 is

E(z) =
1

1 +W (z)

z

z � 1

=
zfz + [Kpz +Kd(z � 1)]Gp(z)g

f(z)

(13)

For processes with deadtime, Dahlin [10] proposed the choice of com-
mand behaviours based on the �rst-order and second-order lags delayed by
the deadtime that equals a multiple of sampling period. Dahlin's controller
is designed and tuned to match the prescribed continuous aperiodical re-
sponse of the closed-loop system. The speed of response may be adjusted
by the given tuning parameter and the undesirable "ringing" (large initial



M. Stoji�c, S. Vukosavi�c, and Lj. Draganovi�c: Process control structure ... 17

uctuations) of control variable is reduced by eliminating critical poles from
the controller pulse transfer function.

Another wide class of controllers that ensure strictly aperiodical re-
sponses consists of so-called deadbeat or cancellation controllers designed
to cancel process poles and zeros [5]. The extended deadbeat controllers
are also used to design a PID controller with relatively small computational
e�ort. However, such PID controller can be employed in slowly varying pro-
cesses with no or small deadtimes. The choice of the sampling time depends
on the allowable ringing or permissible values of the control variable, so that
its applicability is somewhat restricted.

In this paper, we also require a strictly aperiodical continuous-time re-
sponse of the closed-loop system, with settling time as small as possible. In
such a case, the error signal e(k) does not change the sign, and therefore the
optimal values of controller parameters Kp, Ki, and Kd may be determined
by minimizing the sum of error samples, i.e.,

J = min

1X
i=0

e(iT ) or J = minE(z)jz=1

By setting z = 1 in (13), the performance index (14) becomes

J = min
1 +KKp

F (1)
= min

1 +KKp

KKi
(15)

Hence, the problem of adjustment of the controller parameters is re-
duced to the problem of determining the minimal value of (1 +KKp)=KKi

under the constraint that all closed-loop system poles are to be real, pos-
itive, and inside the unit circle of the z plane. Let us assume the system
closed-loop poles to be �1, �2, �3, and �4. Then, according to (11) and (15),
the performanse index becomes

J =min
(1�A)(1 +KKp)

F (1)

=
(1�A)(1 +KKp)

(1� �1)(1� �2)(1� �3)(1� �4)

(16)

Since �1�2�3�4 = a0, the performance index may be rewritten as

J =
(1�A)(1 +KKp)a

3
0

(�1�2�3 � a0)(�1�2�4 � a0)(�1�3�4 � a0)(�2�3�4 � a0)
(18)
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The necessary conditions for minumum of (18) are @J=@�i = 0, i =
1; 2; 3; 4. Under the constraint �1�2�3�4 = a0 = Const, these conditions
are easily calculated from (18) and then, after simple rearrangement, are
reduced into the following four simultaneous equations

3� 2(�2 + �3 + �4) + �2�3 + �2�4 + �3�4 = 0 (19a)

3� 2(�1 + �3 + �4) + �1�3 + �1�4 + �3�4 = 0 (19b)

3� 2(�1 + �2 + �4) + �1�2 + �1�4 + �2�4 = 0 (19c)

3� 2(�1 + �2 + �3) + �1�2 + �1�3 + �2�3 = 0 (19a)

By successive subtraction of (19b) from (19a), (19c) from (19b), (19d)
from (19c), and (19a) from (19d), equations (19) may be reduced to equiv-
alent set of equations

(�1 � �2)(2 � �3 � �4) =0

(�2 � �3)(2 � �1 � �4) =0

(�3 � �4)(2 � �1 � �2) =0

(�4 � �1)(2 � �2 � �3) =0

(20)

With 0 < �i < 1, i = 1; 2; 3; 4, the solution of equations (20) is
�1 = �2 = �3 = �4 = �. Hence, we arrive to an important conclusion:
The minimal value of performance index (15) is obtained when all poles of
the system closed-loop characteristic equation are the same and located on
the positive real axis inside the unit circle in the z�plane. By simple inspec-
tion, it can be proved that this condition is both necessary an su�cient for
minumum of J .

Setting a0 = �4, a1 = �4�3, a2 = 6�2 and a3 = �4� into equations
(12), one obtains

�4� =� (1 +A) + (1�AB)K(Kp +Ki +Kd) (21a)

6�2 =A� (1�AB)K(Kp + 2Kd) + (B � 1)AK(Kp +Ki +Kd)
(21b)

�4�3 =(1�AB)KKd � (B � 1)AK(Kp + 2Kd) (21c)

�4 =(B � 1)AKKd (21d)

By eliminating KKp, KKi and KKd from equations (21), one obtains

(1�AB)3�4 + 4A(1�AB)2(B � 1)�3 + 6A2(1�AB)(B � 1)�2

+4A3(B � 1)3� +A3(A�B)(B � 1)2 =0
(22)



M. Stoji�c, S. Vukosavi�c, and Lj. Draganovi�c: Process control structure ... 19

By solving equations (21a), (21c), and (21d) for KKp, KKi and KKd,
we arrive to formulas for determining the optimal values of controller pa-
rameters:

KKp =
1� 3AB + 2A

A2(B � 1)2
�4 +

4

A(B � 1)
�3 (23)

KKi =
2AB �A� 1

A2(B � 1)2
�4 �

4

A(B � 1)
�3 �

4

1�AB
� +

A+ 1

1�AB
(24)

KKd =
1

A(B � 1)
�4 (25)

where � is a real positive constant 0 < � < 1 that satis�es equation con-
straint (22).

Thus the procedure of determining the optimal parameters is carried out
through several successive steps. First, decide upon the achievable closed-
loop bandwidth of the continuous system fc bearing in mind the various
engineering constraints upon the speed of transient response and the desired
system ability to reduce the inuence of external disturbances on the con-
trolled variable. Then, pick the sampling rate three of four times greater
than fc; i.e.,

T �
1

(3� 4)fc
(26)

For an adopted sampling time T and given plant parameters Tpr and
Td, calculate A = exp(�T=Tpr) and B = exp(Td=Tpr) and set the calculated
values into equation (22) to solve this equation for its real root � lying on
the real axis inside the unit circle of z�plane. Finally, put the value of �
into (23), (24), and (25) to calculate optimal loop gains. Note that, for all
values of 0 < A < 1 and B > 1 that are of interest, the solution of equation
(22) contains the single positive real root 0 < � < 1.

For the user convenience, equation (22) was solved for di�erent values
of A and B and the obtained values of � were put into Table 1. The Table
can be used, in this or in a more detailed form, as a look-up table. The
distribution of real root � along the positive part of real axis in z�plane is
illustrated in Fig. 2.

To check the validity of the proposed analytical procedure of optimiza-
tion, one can calculate coe�cients a3, a2, a1 and a0 by using equations (12),
for pertinent values of KKp, KKid and KKd from (23)-(25) and the related
value of � from Table 1. In doing so, the characteristic equation f(z) = 0 is
always reduced to the factored form (z � �)4 = 0.
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Table 1. Pertinent values of positive real pole � for
di�erent values of A = exp(�T=Tpr) and B = exp(Td=Tpr)

B/A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.1 0.0502 0.0854 0.1192 0.1539 0.1915 0.2342 0.2859 0.3543 0.4630

1.2 0.0670 0.1121 0.1543 0.1968 0.2420 0.2922 0.3512 0.4267 0.5404

1.3 0.0789 0.1303 0.1776 0.2247 0.2740 0.3280 0.3905 0.4688 0.5830

1.4 0.0884 0.1445 0.1954 0.2455 0.2975 0.3539 0.4184 0.4979 0.6115

1.5 0.0965 0.1562 0.2098 0.2622 0.3161 0.3740 0.4397 0.5198 0.6324

1.6 0.1035 0.1662 0.2220 0.2761 0.3314 0.3905 0.4570 0.5373 0.6487

1.7 0.1098 0.1751 0.2327 0.2881 0.3445 0.4044 0.4713 0.5517 0.6620

1.8 0.1156 0.1830 0.2421 0.2987 0.3559 0.4164 0.4836 0.5638 0.6730

1.9 0.1209 0.1902 0.2506 0.3081 0.3660 0.4269 0.4943 0.5743 0.6825

Fig. 2. Placing of the positive real pole inside the unit circle
of the z�plane

Recall that the process control loop with deadbeat or cancellation con-
troller has all closed-loop poles at the origin of z�plane [5]. Consequently,
having an initial excitation, the control loop settles after n sampling instants
into the steady-state (n is the system order). The inadequacy of deadbeat
controllers consists in its relatively small robustness with respect to changes
of plant parameters, initial large positive control variable u(0) (ringing), and
in�nite closed-loop bandwidth that makes system extremely sensitive to ex-
ternal disturbances and measuring noise. On the other side, the process
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control loop with suggested optimal PID controller has also all closed-loop
poles at the same point but moved from the origin at z = �. Thus, com-
pared to the system with deadbeat controller, the robustness of such closed
closed{loop system is signi�cantly enhanced and the ringing of control vari-
able is reduced. The bandwidth of the closed-loop system with optimal PID
controller is calculated as

fc �
� ln�

2�T
: (27)

Notice from Table 1 that by increasing the total transport lag 0 <
Td < T , the closed-loop bandwidth is reduced, and the process control loop
becomes less sensitive to external disturbances and measuring noise. Thus
the transport lag may be used as an additional adjustable parameter that
can be easily tuned in a digital system.

4. Illustrative Example

Let the plant parameters are K = 0:5, Tpr = 4 s, and Td = 0:6 s. We
assume sampling time T = 1 s, and then A and B become A = 0:7788 and
B = 1:1618. With these values, equation (22) was solved for single positive
real root to obtain � = 0:3868. Substituting A, B and � into (23)-(25), we
calculate optimal loop gains KKp = 1:61584, KKi = 0:63907 and KKd =
0:17765 or, for K = 0:5; (Kp;Ki;Kd)opt = (3:23168; 1:27814; 0:35531).

Fig. 3. Step response of the process control system
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Fig. 4. Sistem control variable

With the optimal values of controller parameters, the process control
system was simulated and the simulation traces are shown in Figs. 3 and 4.
The system continuous step response shown in Fig. 3 is strictly aperiodical.
Unlike the process control loop with deadbeat controller, the manipulated
variable shown in Fig. 4 varies within tolerable bounds.

5. Conclusion

An advantageous structure of microcontroller-based slowly varying pro-
cess control system with simple PID-DDC law has been proposed and ana-
lyzed in details. The presented analytical procedure of determining optimal
gains of P, I, and D actions enables the designer to tune, in a straightforward
manner, the PID controller so as to match the desired speed of aperiodical
continuous step response of the system. The results of the outlined optimiza-
tion procedure are given in the form suitable for a microcontroller implemen-
tation. The robustness of the control scheme and inuence of transport lag
within the control loop on the speed of system response were analyzed. It
has been shown that, unlike deadbeat controllers, samples of control variable
are limited within admissible boundaries.
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