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QUADRATIC CLASSIFIER WITH HEURISTICALLY

DECISION THRESHOLD IN

ROBUST AR MODELING OF SPEECH

Milan �Z. Markovi�c

Abstract. Possible applications of quadratic classi�er with heuristically de-
cision threshold in robust AR speech analysis and speech compression schemes
are considered. A robust recursive procedure based on WRLS algorithm
with VFF and the frame-based quadratic classi�er with heuristically deci-
sion threshold is proposed for identi�cation of nonstationary AR model of
speech. Additionally, possible application of the proposed procedure in stan-
dard CELP 4800 b/s speech compression algorithm is evaluated. Experimen-
tal analysis is done based on the results obtained through analyzing speech
signal with voiced and mixed excitation frames. Obtained results show that
the proposed robust recursive procedure achieves more accurate AR speech
parameter estimation, provides improved tracking performance, and could be
used to solve some speech compression tasks more e�ciently.

1. Introduction

Linear prediction coding (LPC) of speech signal [6] is based on a linear
model of speech production system, given by

s(k) +

pX
i=1

ajs(k � i) = e(k) (1)

where s(k) is a speech sample, faig (i = 1; : : : ; p) are the parameters of AR
model (LPC parameters) of order p and e(k) is a sample of speech excitation
signal. In the conventional LPC analysis, the LPC parameters are estimated
by either autocorrelation or covariance method [6]. Both algorithms mini-
mize the sum of squared residuals (a di�erence between a speech sample and

Manuscript received Jan. 10, 1999.
The author is with Institute of Applied Mathematics and Electronics, Kneza Milo�sa

37 11000 Belgrade, Serbia, e-mail: markovic@kiklop.etf.bg.ac.yu .

103



104 Facta Universitatis ser.: Elec. and Energ. vol. 12, No.3 (1999)

its linear prediction) representing the least squares (LS) type algorithms.
These algorithms are optimal if the excitation signal is an innovation ran-
dom process of white Gaussian noise type.

However, there are two main problems in application of the conventional
LPC methods. The �rst problem consists of an inherent nonstationarity of
speech production system, while the second problem is, in fact, that the
speech excitation does not match the assumption of white Gaussian noise,
particularly on the voiced speech frames. In the other words, the AR model
cannot adequately represents the voiced speech.

In order to solve both of the above mentioned problems, robust recursive
procedures with a frame-based statistical pattern recognition approach for
e�cient identi�cation of nonstationary AR speech model are proposed in
[10,7,9]. These algorithms are based on the weighted recursive least squares
(WRLS) algorithm with variable forgetting factor (VFF), as an estimation
procedure, and a frame-based quadratic classi�er of nonstationary signals, as
an adaptive classi�er. In fact, the iterative quadratic classi�cation method
[1] for design of the frame-based classi�er is proposed in [10], and its modi�ed
version for real-time applications is proposed in [7,9]. It is shown in [7,9]
that proposed modi�cation is rather insensitive to an inappropriateness of
the assumed classi�cation model and, consequently, it is recommended for
the use in the frame-based nonstationary pattern recognition systems. The
basis of the mentioned procedures is the assumption of two-class nature of
the voiced speech excitation, such that a large part of the excitation is from
a normal distribution with a very small variance while a small part is also
from the normal distribution but with a much bigger variance. Since the
quadratic classi�er is the optimal classi�er in case of Gaussian distributed
data, this approach is emphasized compared to other robust nonrecursive
[4,17] and recursive [3] speech analysis approaches based on Huber's M-
estimation theory, as well as robust recursive procedure based on Kalman
�ltering [19].

In order to improve tracking performance of the robust recursive algo-
rithm, described in [7,9], a procedure based on the quadratic classi�er with a
heuristically decision threshold is proposed. Comparative experimental anal-
ysis is done through processing the real speech signal with voiced and mixed
excitation frames. Besides, a possible application of the quadratic classi�er
with heuristically decision threshold in the nonrecursive robust estimation
procedure in standard CELP 4.8 kb/s speech coder is evaluated.

The paper is organized as follows. Section 2 is dedicated to a brief
description of the proposed recursive procedure and its application to robust
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AR speech analysis. A possible application of the proposed nonrecursive
robust procedure in the standard CELP 4800 b/s speech coder is considered
in Section 3. Comparative experimental analysis is presented in Section 4
while conclusion is given in Section 5.

2. A Novel Robust Recursive
AR Speech Analysis Procedure

The equation (1) can be rewritten in the linear regression form

s(k) = ZT (k)� + e(k) (2)

where ~� = fa1 : : : apg is the vector of LPC parameters, and ZT (k) = f�s(k�
1) : : : � s(k � p)g is the observations vector. Similarly as the nonrecursive
sliding window methods [4,17], the application of WRLS algorithm with VFF
represents a way for solving the problem of identi�cation of nonstationary
AR model of speech production system. Based on the equation (2), the
WRLS algorithm with VFF is given by [5]

� (k) =
1

�

h
� (k � 1)�

� (k � 1)Z(k)ZT (k)� (k � 1)

�+ ZT (k)� (k � 1)Z(k)

i
(3)

�(k) =�(k � 1) + � (k)Z(k)
�
s(k)� ZT (k)�(k � 1) (4)

where � (k) is the gain matrix and � is the variable forgetting factor (VFF).
The value of VFF less than one makes the WRLS algorithm adaptive to the
nonstationarity of LPC parameters. In order to obtain the reliable estimates
of nonstationary LPC parameters, the value of VFF is determined at each
time instances by the modi�ed generalized likelihood ratio (MGLR) algo-
rithm [13], which enables fully automatic detection of the instants of abrupt
changes in stationarity of speech signal. In the other words, the value of VFF
changes at each time instances according to the amount of LPC parameter
variability, which is expressed through the value of the MGLR discrimination
function [3]. The MGLR algorithm is based on the consideration of signal
samples from three frames (windows): reference, test and joint window,
which is a concatenation of the preceding two windows, see Fig. 1. During
analysis procedure, all of the three windows "slide" with a one-sample step
keeping the �xed length and relationship. For given time instance n, the
MGLR discrimination function D could be expressed as follow [13]

D(n;N) =L(n�N + 1; n+N)� L(n�N + 1; n)� L(n+ 1; n+N)
(5)

L(c; d) =(d� c+ 1) ln

2
4 1

d� c+ 1

dX
j=c

e2j

3
5 (6)
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where N is a window length, and ej is a residual signal, i.e. êj = s(j) +Pp

i=1 âis(j � i), with âi being an estimate of ai. A strategy of choosing
the VFF at each time instance is based on the fact that the discrimination
function D(n;N) is proportional to the degree of nonstationarity of signals.
Consequently, letting �max when Dmin and �min when Dmax, as well as by
taking the linear interpolation between these values, is intuitively a good
choice [3].

Fig. 1. Three analysis windows in the MGLR algorithm

The relationship between the actual value of � and the current value of
the MGLR discrimination function is given in Fig. 2. The values of �max,
�min, Dmax, Dmin must be determined in advance.

Fig. 2. Relationship between an actual value of � and
current value of MGLR discrimination function D.

In order to solve the problem of inappropriateness of AR modeling of
speech production system, particularly on the voiced frames, a procedure
for robustifying the WRLS algorithm with VFF by applying nonstationary
pattern recognition method is proposed in [10,7,9]. This procedure consists
of the application of frame-based quadratic classi�er in a combined nonro-
bust/robust recursive AR speech analysis scheme. The nonrobust procedure
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represents the WRLS algorithm with VFF (� < 1) given by the equations
(3) and (4). In this case, as mentioned before, � changes at each time steps
according to the value of MGLR discrimination function, as proposed in [3].
On the other hand, the robust procedure is the WRLS algorithm with vari-
able factor � > 1, which changes according to the value of corresponding
residual sample. In this case, the value of � is heuristically determined by
the expression: � = 1=(1 � jrnormj=2), where rnorm is the normalized value
obtained by dividing the current residual with the maximal residual on the
current frame. In addition, the maximal residual value is updated on the
frame-by-frame manner. In this way, the algorithm assigns less weight to
the large residuals, so that it is robust in the sense of its insensitivity to the
spiky excitations on the voiced frames.

In this heuristic procedure, the frame-based quadratic classi�er of non-
stationary signals is used to classify the residual speech samples into the two
classes. The �rst class consists of "small" residual samples and the second
one consists of "large" residual samples. Fig. 3 represents the example of
residual signal and two corresponding classes, obtained after applying the
proposed classi�cation procedure on the natural speech signal with voiced
speech frames (Serbian vowel "I"). The classi�cation of the k-th residual
sample selects either the nonrobust (�rst class) or the robust (second class)
recursive AR procedure for LPC parameter estimation at the k-th time in-
stance. In this case, the classi�er is very simple, i.e. it is one-dimensional,
and the mean vectors and covariance matrices are reduced to the means and
variances, respectively. The classi�cation consists of two steps: initialization

and adaptation.

Initialization: On the initial frame of signal one has to determine the
following: (1) the starting LPC parameter vector which is used as the ini-
tial condition for the proposed recursive procedure; (2) the initial maximal
residual value; and (3) the initial partition of the frame. The starting LPC
parameters are obtained by applying the conventional nonrecursive covari-
ance LPC method [6] on the initial frame (good results are obtained with
the initial frame length of 100 samples). The initial quadratic classi�er is
obtained applying the iterative quadratic classi�cation procedure [10], based
on the initial partition. Having calculated the initial maximal residual value,
this partition is obtained by comparing the obtained normalized residuals
with the threshold of value 0.5 (the residuals less than the threshold are
assigned to the �rst class, otherwise they are assigned to the second class).
As well as the c-mean algorithm, the iterative quadratic classi�cations clus-
tering algorithm is derived from the general clustering algorithm, described
in [1]. Assume that we want to classify the N samples, X1; : : : ;XN into the
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Fig. 3. An example of the nonstationary quadratic classi�er application
in robust recursive AR speech analysis Serbian vowel "I":
(a) Residual signal; (b) Samples classi�ed in the �rst class;
(c) Samples from the second class.

one of L classes, !1; : : : ; !L, where L is assumed to be given. The iterative
quadratic classi�cations clustering algorithm has the form:
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1. Choose an initial partition of given data set and calculate: Pi(0) (a
priori class probability),Mi(0) (a mean class vector), and �i(0) (a class
covariance matrix) for i = 1; : : : ; L.

2. Having calculated a priori class probabilities, Pi(l), mean vectors, Mi(l),
and covariance matrices, �i(l), at the l-th iteration, reclassify each Xj

according to the smallest: (1=2)(Xj�Mi)
T��1i (Xj�Mi)+(1=2) ln j�ij�

lnPi. The a priori class probability for !i is estimated by the ratio of the
number of samples within the class !i and the total number of samples.

3. If the classi�cation of any Xj is changed, calculate the Pi(l+1), Mi(l+
1), and �i(l + 1) for the new class assignment, and go to Step (2).
Otherwise, stop.

Adaptation: The initial classi�er is then applied for classifying the resid-
ual speech samples obtained by the proposed recursive AR speech analysis
on the next frame of signal with size N . The result of the k-th residual sam-
ple classi�cation invokes either the nonrobust recursive procedure (� < 1) or
robust one (� > 1) to estimate the vector of LPC parameters in the k-th time
instance. The obtained parameter vector is used to determine the (k+1)-th
residual sample and the procedure is continuing. The classi�cation result
of entire frame represents the initial partition of that frame and is used to
produce the initial quadratic classi�er for the next frame of size N, without
the use of the iterative procedure (RTQC algorithm [7,9]), and so on.

In this paper, a modi�cation of the RTQC algorithm (named RTQCH
algorithm) which is based on the quadratic classi�er with heuristically de-
cision threshold is considered. Namely, as it is shown in [1], the use of the
optimal decision threshold in Bayes error estimation procedure when the
limited training data set is available is highly ine�cient, and a heuristically
determination of the decision threshold is suggested. The problem of the
limited training data set is also presented in the application of the quadratic
classi�er in AR speech parameter estimation and, thus, a similar proce-
dure for determination of the decision threshold is proposed. The value:
Thresh = (�1 + �2)=2, is adopted as the heuristically threshold where �1,
�2 represent standard deviations of the �rst and second class, respectively.

The convergence property of the proposed robust estimation algorithm
is mainly determined by the conventional WRLS algorithm with VFF, since
the a priori probability of the �rst class is signi�cantly greater than the a
priori probability of the second one (in the case of voiced speech the typical
values are 0.9 and 0.1 respectively). The robust part of the proposed proce-
dure improves the convergence properties, since the robust WRLS suppress
the inuence of the spiky parts of voiced speech excitation. However, the ex-



110 Facta Universitatis ser.: Elec. and Energ. vol. 12, No.3 (1999)

act theoretical convergence analysis is only possible in the case of stationary
signal [16].

3. Robust Nonrecursive LPC Parameter Estimation
in Standard Celp 4.8 Kb/s

This Section deals with the partial problem of CELP coding algorithms:
the estimation of LPC spectral parameters. In the standard CELP 4800 b/s
coder, USFS1016 CELP 4800 b/s [18], the autocorrelation method with 30
ms Hamming window is adopted as the LPC parameters estimation pro-
cedure, without presenting experimental comparison with some other LPC
methods. In this sense, a comparative analysis of the inuence of the LSP
parameters quantization and interpolation, used in [18], to the spectral char-
acteristics of four standard LPC methods (autocorrelation with Hamming
window, covariance, modi�ed covariance, and lattice method) is presented
in [12]. The comparative experimental analysis was done based on the three
di�erent spectral measures related to the RMS LOG spectral measure: like-
lihood ratios, cosh measure and cepstral distance [2]. The experimental
results, presented in [12], have not justi�ed the use of the autocorrelation
method with Hamming window in USFS1016 CELP 4800 b/s speech coder.
Namely, the best results, e.g. the smallest spectral degradation between the
unquantized and quantized interpolated LSP parameters, were obtained by
using the modi�ed covariance method.

A possibility of using robust method based on Huber's M -estimation
theory (RLPC method) for e�cient LPC parameters estimation in standard
CELP 4800 b/s coder is elaborated in [14]. Namely, the comparative analysis
of the inuence of the quantization and interpolation of LSP parameters to
the spectral characteristics of the RLPC and standard LPC parameter esti-
mation methods was presented. The experimental results, presented in [14],
justi�ed the use of the proposed RLPC estimation procedure in USFS1016
speech coding algorithm. However, the Huber's robust estimation proce-
dure is iterative in its nature, and could make a considerable increasing
of the overall complexity of the standard CELP algorithm. To overcome
this problem, the use of a heuristic two-stage sample-selective LPC method,
which is slightly more complex than the autocorrelation method, is proposed
in [8,11]. The application of this method (which is a modi�ed version of the
corresponding method proposed in [15]) in the USFS1016 4.8 kb/s results
in smaller LPC spectral degradation, compared to the standard LPC meth-
ods. In the other words, the experimental results, presented in [8,11], justi-
�ed the use of the heuristic robust sample-selective LPC procedures in the
USFS1016 algorithm. In order to further decrease the LPC spectral degra-
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dation in USFS1016 algorithm, an application of the frame-based quadratic
classi�er of nonstationary signals in the mentioned heuristic sample-selective
LPC procedure is considered.

The proposed sample-selective LPC method is realized as a two-stage
standard LPC method and represents the modi�cation of the method devel-
oped in [15]. Namely, instead of excluding the whole prediction equations
that lead to the very large residual values, as proposed in [15], we have
adopted zero values in the observation matrix for the speech samples cor-
responding to the very large residual values. These large residual values
are selected by using the frame- based quadratic classi�er of nonstationary
signals. The proposed robust sample-selective LPC parameter estimation
procedures based on the quadratic classi�er consist of the following steps:

1. Applying one of the standard LPC methods on the windowed speech
frame (the �rst stage of the procedure).

2. Inverse �ltering of the speech on the given frame by using the estimated
inverse �lter to obtain the residual signal.

3. Calculating the maximum residual value and normalizing the residual
signal on the entire frame.

4. Applying the given or another standard LPC method (the second stage
of the procedure) with the modi�ed observation matrix of the given
speech frame. Quadratic classi�er is used to classify the normalized
residual samples into the two classes, the class consisting of "small"
residual samples and the class consisting of "large" ones. Namely, in
case of the speech samples for which the corresponding normalized resid-
ual values are classi�ed into the class of the "large" residual values
by using the above described adaptive real-time frame-based quadratic
classi�er, zero values are adopted in the modi�ed observation matrix.
In this paper, we consider the use of the quadratic classi�er with op-
timal decision threshold [7,9], and with a heuristically threshold, ob-
tained by the procedure similar to the one proposed in [1]. The value:
Thresh = (�1 + �2)=2, is also adopted as the heuristically threshold in
this case.

3. Experimental Analysis

The e�ciency of the proposed algorithm is tested on natural speech
signal. The signal consists of �ve isolately spoken serbian vowels ("A", "E",
"I", "O", "U") and ten isolately spoken digits ("1", "2", ... ,"0") from one
speaker. The signal is sampled with fs = 10 kHz and preemphasized with
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q = 1 [17]. All experimental results are obtained by using the 10-th order
AR model. As the objective quality measure, the MAR (Mean Absolute
Residual) criterion is used [7]

J =
1

M

MX
i=1

js(i)� ŝ(i)j (7)

where s(i) is the speech sample at the i-th time instance, ŝ(i) is its linear
prediction, and M is total number of speech samples. In the all experiments
the following bounds of VFF are used: �max = 0:99, and �min = 0:95, as
proposed in [3]. In the case of the MGLR discrimination function bounds,
in the all experiments, we used Dmin = 0, while Dmax was initially set to
200 and then updated during analysis of the given speech frame [3]. Table 1
shows the MAR criterion values obtained through the analysis of �ve vowels
and ten digits by using the WRLS algorithm with VFF and the proposed
robust recursive AR speech analysis procedure based on the quadratic classi-
�er with the optimal (RTQC) and heuristically decision threshold (RTQCH).
The MAR values for robust procedures, presented in Table 1, are obtained
by using the N = 100 speech samples as an adaptation frame. Also, num-
bers of residual speech samples classi�ed in the �rst (CLASS1) and second
(CLASS2) class are presented in the Table 1.

As the other evaluation criteria, bias, variance, and sensitivity to the
intensity of pitch impulses of the estimated AR speech parameters are used.
Fig. 4, and 5 show the typical examples of estimated trajectories of the
�rst LPC parameter (AR1), obtained by the WRLS algorithm with VFF
and the two versions of the proposed robust recursive procedure (RTQC
and RTQCH) for the digits "2" and "8", respectively. As for the RTQC and
RTQCH algorithms, the trajectories, shown on Fig. 4 and 5, are obtained by
using the speech frame length (learning data set length) of N = 100 speech
samples. Estimated AR1 parameter trajectories are compared in terms of
the "reference trajectories" [17] of estimated LPC parameters, which were
obtained using a rectangular sliding window shorter than the pitch period
and the nonrecursive covariance LPC method. Namely, the experimental
analysis has shown that the LPC parameter estimates are most accurate
when the data sliding window is shorter than the pitch period, comprising
almost a whole closed-glottis interval but not the instant of the glottal clo-
sure (a such part of signal corresponds quite well to the linear AR model
with white Gaussian excitation and, consequently, the given LPC method
gives the optimal estimates) [17]. In this sense, local maximum tops of the
LPC-REF AR1 parameter estimates trajectories (see Fig. 4 and 5) represent
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Table 1. MAR criterion values: RTQC and RTQCH algorithms.

Test WRLS RTQC RTQCH

Signal with VFF MAR CLASS1 ClASS2 MAR CLASS1 CLASS2

A 52.34 50.42 3271 419 50.41 3269 421

E 74.56 73.05 3459 231 73.01 3332 358

I 39.72 39.81 3354 336 39.57 3264 426

O 27.87 27.00 3521 169 27.13 3311 379

U 10.40 10.32 3552 138 10.29 3266 424

1 36.94 34.11 6157 533 34.97 5904 786

2 28.56 27.36 6217 473 27.11 5598 1092

3 28.78 26.84 5221 469 28.48 4536 1154

4 27.07 24.46 5848 842 24.51 5527 1163

5 19.39 17.34 6099 591 17.26 5511 1179

6 22.28 21.12 6779 911 21.58 5566 2124

7 34.99 32.90 6158 532 32.65 5634 1056

8 17.89 18.82 6432 1258 17.42 6207 1483

9 38.72 37.44 5110 580 37.52 4646 1044

0 21.96 21.23 5222 468 21.32 4257 1433

the points of the "reference trajectories", i.e. the best parameter estimates.
Based on the experimental results, presented in Table 1, and Fig. 4 and 5, it
can be concluded that the trajectories of AR1 parameter estimates, obtained
by the proposed robust recursive AR speech analysis procedure based on the
quadratic classi�er with heuristically decision threshold (RTQCH) possess
improved tracking characteristics, lower bias, lower variance, and lower sen-
sitivity to the intensity of pitch impulses than the conventional WRLS with
VFF, and earlier version of the robust procedure (RTQC algorithm). The
main advantage of the RTQCH algorithm is in more robustness (larger values
in the column CLASS2 of the Table 1) compared to the RTQC algorithm.

As for evaluation of the proposed robust procedure in speech coding
domain, a possible application of the RTQC and RTQCH algorithms for
nonrecursive AR speech parameter estimation in USFS1016 4.8 kb/s CELP
speech coder [18] is analyzed. The test speech base consists of 4 �les, each
containing 10 isolated digits, spoken by three male speakers (R1, R4, and
R9) and a female speaker (R14). File lengths of R1, R4, R9, and R14
are 64000, 68000, 72000, and 77000 samples, respectively. LPC analysis
of the 10th order is applied to the nonpreemphasized speech signal on the
nonoverlapping frames of 30 ms, as in [18]. The standard and robust LPC
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Fig. 4. Trajectories of AR1 parameter estimates obtained by using:
LPC(50)-REF, WRLS with VFF, RTQC, and RTQCH algorithms,
in analyzing of digit: "2".

Fig. 5. Trajectories of AR1 parameter estimates obtained by using:
LPC(50)-REF, WRLS with VFF, RTQC, and RTQCH algorithms,
in analyzing of digit: "8".

methods are performed in such a way that LPC parameters, obtained by
using the proposed methods (with 15 Hz bandwidth expansion), are �rst
transformed into LSP parameters, quantized and then interpolated, in order
to determine LSP values to be used for each subframe. Spectral distortion
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measures (denoted by "Q") are computed between the signal spectra on the
given speech frame, obtained by corresponding unquantized and quantized
LSP parameters. The same measures (denoted by "Q+I") are computed on
the subframe level. As the objective spectral criterion, the cepstral distance
[2], as the spectral measure related to the RMS LOG spectral measure, is
used in all the experiments. RMS LOG spectral measure is given by

(d2)
2 =

Z �

��

jV (�)j2
d�

2�
(8)

where:

V (�) = ln

�
�2

jA(ej�)j2

�
� ln

�
(�0)2

jA0(ej�)j2

�
(9)

The Fourier series expansion for the model log spectrum can be written
as

ln

�
�2

jA(ej�)j2

�
=

1X
k=�1

cke
�jk� (10)

where c0 = ln[�2], and c�k = ck, are cepstral coe�cients. A similar
expression holds for the expansion of: ln[(�0)2=jA0(ej�)j2], yielding coe�-
cients fc0kg. Applying the Parseval's relation to the (d2)

2 we could de�ne
the cepstral distance u(L) as [2]

u2(L) =

LX
k=�L

(ck � c0k)
2 = (c0 � c0

0
) + 2

LX
k=1

(ck � c0k)
2 (11)

In this paper, we use the L = 4p (p is the �lter order). Besides, only
the results for the case that the gain constants (� and �0) are identical and
equal to 1 (DM(7) from [2]) are used. Also, the factor 4.34294418 (rep-
resenting the quotient: 10= ln(10)) is used, providing that the values are
expressed in decibels. The values of the cepstral distance spectral mea-
sure for the test speech base obtained by using the standard [12], Huber's
robust [14], sample-selective [8], combined sample-selective LPC methods
[11], and robust sample-selective LPC methods based on quadratic classi�er
with optimal (RTQC) and heuristically (RTQCH) decision threshold, pro-
posed in this paper, are shown in Table 2. Huber's robust LPC method is
denoted as RLPC, while the sample-selective LPC methods are denoted as:
A-A (two- stage autocorrelation method with Hamming window), C-C (two-
stage covariance), M-M (two-stage modi�ed covariance) and L-L (two-stage
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Table 2. Summary values of the cepstral distance for the standard
and robust LPC methods in USFS1016 CELP 4800 b/s algorithm

Standard/ R1 R4 R9 R14

Robust Method Q Q+I Q Q+I Q Q+I Q Q+I

A 490.4 2248.6 509.4 2379.4 606.3 2460.3 483.3 2689.6

Standard C 492.2 2166.7 505.9 2256.8 618.0 2342.7 487.5 2566.3

M 488.6 2164.2 506.3 2254.3 619.2 2337.7 488.3 2559.8

L 487.9 2167.0 506.6 2260.4 618.5 2358.2 487.8 2573.8

Robust RLPC 448.9 2179.8 462.3 2242.8 550.9 2288.3 477.6 2526.5

A-A 396.5 2057.5 405.7 2191.4 431.4 2226.3 435.0 2378.9

Sample- C-C 381.9 1765.4 392.4 1896.5 421.1 1888.8 433.7 2058.9

Selective M-M 383.1 1759.4 391.5 1887.7 433.4 1881.1 436.4 2051.3

LPC L-L 392.4 1792.5 399.6 1925.2 431.1 1940.2 435.1 2083.3

Combined C-A 375.8 1716.1 393.3 1860.6 430.3 1832.4 439.4 2017.3

Sample M-A 379.0 1726.5 393.4 1869.2 432.0 1830.3 436.4 2021.8

Selective L-A 380.2 1718.2 392.0 1866.2 433.2 1845.8 436.2 2023.7

LPC C-M 380.0 1749.3 391.0 1879.4 431.7 1881.9 437.3 2042.7

A-A 397.6 2111.2 419.6 2404.7 441.8 2316.1 432.8 2629.0

Sample- C-C 391.9 1816.3 399.0 2089.7 430.8 1995.4 436.8 2290.5

Selective M-M 391.6 1803.7 399.0 2097.9 443.9 1979.6 433.9 2290.8

RTQC L-L 399.9 1838.1 403.5 2136.3 432.8 2048.9 430.8 2299.2

Combined C-A 386.4 1768.3 399.1 2040.3 432.5 1905.9 434.2 2227.7

Sample- M-A 386.7 1770.0 399.2 2073.3 438.4 1909.6 432.2 2246.1

Selective L-A 385.5 1763.6 398.7 2066.3 431.8 1934.0 429.2 2215.0

RTQC C-M 391.7 1802.2 397.8 2063.6 438.3 1976.0 436.5 2269.5

A-A 381.8 1975.7 407.6 2081.6 426.6 2162.7 429.1 2252.3

Sample- C-C 373.8 1711.7 394.1 1856.3 427.0 1946.5 425.4 1998.4

Selective M-M 373.6 1685.6 392.4 1859.3 436.0 1892.6 425.8 2073.4

RTQCH L-L 378.7 1708.9 390.8 1808.7 437.0 1964.7 426.8 1938.7

Combined C-A 370.0 1642.7 387.4 1782.1 425.4 1789.7 423.3 1950.9

Sample- M-A 369.7 1644.5 388.3 1806.8 427.8 1800.0 418.6 2001.5

Selective L-A 370.4 1626.1 390.8 1808.7 431.4 1816.3 426.8 1938.7

RTQCH C-M 372.3 1678.8 393.7 1842.1 435.8 1903.9 426.9 2013.1

lattice method). Based on an extensive experimental analysis, we have used
the following combinations of the standard LPC methods for the combined
sample-selective LPC methods: C-A, M-A, L- A, and C-M.

Based on the experimental results (see Table 2), it can be concluded
that the inuence of the global LPC spectral representation to the speech
signal spectra obtained by the standard LPC and robust methods is smaller
for the robust procedures. Furthermore, the comparison between the ro-
bust procedures (Huber's, sample-selective, combined sample- selective LPC
methods, and corresponding methods based on quadratic classi�er) have
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shown that the smallest inuence of the global LPC spectral representation
in the USFS1016 algorithm is obtained for the combined sample- selective
LPC methods based on quadratic classi�er with heuristically determined
decision threshold (RTQCH algorithm). Additionally, the best results (see
Table 2) are obtained by the two-stage combined sample-selective methods
based on quadratic classi�er with the covariance method in the �rst stage
and the autocorrelation method with the Hamming window in the second
stage of the procedure.

Based on the entire analysis, the proposed robust recursive estimation
procedure based on the quadratic classi�er with heuristically decision thresh-
old (RTQCH algorithm) is recommended as a possible e�cient solution to
the problem of AR speech parameter estimation in the speech analysis tasks.
Additionally, the possible application of the nonrecursive sample-selective
method based on the RTQCH algorithm for the frame-based quadratic clas-
si�er design as the robust LPC parameters estimation procedure in standard
CELP 4800 b/s speech compression scheme is also justi�ed and thus recom-
mended.

5. Conclusion

In the paper, a new robust recursive procedure for parameter estima-
tion of nonstationary AR model of speech production system based on the
WRLS algorithm with VFF and quadratic classi�er with heuristically deci-
sion threshold is introduced. The comparative experimental analysis of the
proposed method, nonrobust WRLS algorithm with VFF, and earlier version
of the robust procedure, is performed on the natural speech signal, isolately
spoken vowels and digits. Experimental results justify that the method pro-
posed in the paper represents a way to cope with the two main problems
of LPC speech analysis, the nonstationarity of LPC parameters and limited
validity of AR model of speech, particularly on the voiced frames. Namely,
it has been observed that the proposed algorithm is more e�cient (lower
bias, lower variance, and lower sensitivity to the pitch impulses) compared
to the conventional WRLS algorithm with VFF, and the same robust pro-
cedure based on the quadratic classi�er with optimal decision threshold.
Additionally, the possible application of the quadratic classi�er with heuris-
tically decision threshold is experimentally justi�ed in the proposed robust
nonrecursive LPC parameters estimation procedure in the standard CELP
speech coder. Based on the entire experimental analysis, the proposed ro-
bust recursive and nonrecursive procedures based on the quadratic classi�er
with heuristically decision threshold are recommended as possible solutions
for parameter estimation of AR speech model in solving some AR speech
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analysis and speech compression tasks, respectively.
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