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Abstract. This paper reviews the exact and approximate linear phase IIR

�lter designs based on the classical approximating functions (elliptic, But-

terworth and Chebyshev type functions) and the usage of various processing

techniques. Using allpass IIR sub�lters obtained from the minimal phase solu-

tion, it is possible to implement a causal �lter which exhibits simultaneously

an approximate constant amplitude response and an exact or approximate

linear phase response.

1. Introduction

A digital �lter having a linear phase response, sharp magnitude response

and a small number of multiplications per output sample is a very desirable

cost-e�ective realization.

A precise linear phase transfer function can be easily realized as an

FIR �lter. Unfortunately, the linear phase FIR �lter requires many times

more multiplications per output sample than an IIR �lter to satisfy a sharp

magnitude response speci�cation. On the other hand, the IIR �lter cannot

be designed to exhibit an exact linear phase. Even more, IIR �lters have

very nonlinear phase responses. Fortunately, an approximate linear phase

IIR �lter can be realized using the classical �lter transfer functions and the

time-reversed techniques.

Alternatively, a nonlinear phase IIR �lter, H(z), can be followed by

allpass phase equalization so that the overall transfer function has the same
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magnitude response asH(z), and an approximate linear phase or a at group

delay in the frequency range of interest [1]. Usually, this realization results

in more multiplies per sample than an FIR �lter [2] and it is not analyzed in

this paper. Also, optimization can be used to simultaneously approximate

both magnitude and phase response speci�cations [3], [4], [5], [6], [7], [8],

with fewer multiplications than corresponding FIR �lters. This approach

usually gives an economical solution, but requires the exhaustive iterative

procedure and sometimes has the problems with convergence.

This paper presents a new approach for designing approximate linear

phase IIR �lters. The proposed approach is based on the classical approxi-

mating functions (elliptic, Butterworth and Chebyshev type functions). The

computation procedure does not require any optimization and therefore is

very fast.
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Fig. 1. Block processing sequences with L sample
long block sequences.

In general, the linear phase IIR �lter has to realize a transfer function or

a partial transfer function Ha(z)Hb(z
�1), where Ha(z) and Hb(z) have the

poles with radii smaller than one. This means that Hb(z
�1) has poles with
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Fig. 2. Block diagram implementations of noncausal transfer
function Hb(z

�1) using the causal �lter Hb(z) and
block processing technique.

radii greater than one, and thus Hb sub�lter is unstable. Several techniques

have been suggested to realize Hb(z
�1) using causal �lters:

� The time reversed technique can be used for realizations where �ltering is

permissible o�-line [9], [10]: (1) time reverse an input sequence x[n] and

create a reversed sequence x[�n], (2) create the output sequence y[�n]

by employing causal �lter Hb(z) whose input is the sequence x[�n], (3)

time reverse output sequence y[�n] and create y[n]. Finally, the output

sequence y[n] is �ltered sequence x[n] by noncausal �lters Hb(z
�1), but

it is created using causal �lter Hb(z). The advantages of using the time

reversed IIR �lter technique versus FIR �lters were presented in [10],

[11], [12], [13], [14], [3].

� The block processing technique can be used for real-time implementa-

tions and the processing of the in�nite length or very long �nite input

sequences [15]. The in�nite length input sequence is divided into L-

length sequences and each sequence is �ltered separately: (1) the input

L-length sequence, x2[n], is stored into last-in �rst-out (LIFO) register;

(2) the time-reversed sequence, x2r[n], is �ltered using �lter Hb yielding

2L�length output sequence y2r[n]; (3) the sum of the last L output

samples of y2r and the �rst L output samples of the previous sequence,

yr1[n], (delayed 2L samples) is a new sequence yr[n]; (4) the L�length

sequence yr[n] is time reversed using LIFO register creating y[n], Figs.

1 and 2. The noncausal �ltering using Hb can be performed before [15]

or after [11], [12], [13], [14] �lter Ha. This technique may require a large

data storage and processing delay. The phase tolerance is smaller for

larger L.
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� A FIR �lter is created using the impulse response of IIR �lter whose

transfer function is Ha(z)Hb(z
�1). The length of this FIR �lter can be

larger than the length of the optimal linear phase FIR �lter. Moreover,

the phase response is only approximately linear. The phase tolerance

can be decreased by increasing the length of the FIR �lter.

� A FIR �lter is created using the impulse response of noncausal IIR �lter

whose transfer function is Hb(z
�1). The length of this FIR �lter can be

much smaller than the length of the optimal linear phase FIR �lter while

the storage requirement is smaller than the storage of block processing

technique. The number of multipliers of FIR �lter is increased, but it

is still smaller than it appears in optimal linear phase FIR �lters.

� The computational cost of the FIR realization can be reduced by creat-

ing a new IIR �lter starting from the impulse response and using Prony

method. This method increases the error of phase responses.

2. Exact Linear Phase Transfer Function

In theory, the exact linear phase transfer function H(z) can be obtained

as a product of two transfer functions

H(z) = Hc(z)Hd(z
�1); (1)

where

1. the transfer functions are identical Hc(z) = Hd(z), or

2. the transfer functions have the identical poles while all zeros lie on the

unit circle.

The exact linear phase IIR �lter can be designed using standard magni-

tude-only IIR �lter design programs and the magnitude response is equal to

jHc(e
j2�f )j2 for Hc(z) = Hd(z). If Hc(z) and Hd(z) are elliptic IIR transfer

functions, Hc(z) = Hd(z), than the same linear-phase design speci�cation

with an additional 6dB stopband attenuation will be met if the poles of

Hc(z) = A(z)=D(z) and Hd(z) = B(z)=D(z) are not identical [16] although

the design program is also based on the classical Jacobi elliptic functions.

x[n]
Hc(z) Hd(1/z)

 y[n]

Fig. 3. Block diagram implementations of exact linear phase
transfer function using elliptic �lters Hc(z) and Hd(z).
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The block diagram implementation of an exact linear phase transfer

function is shown in Fig. 3. The implementation yields only an approximate

linear phase response because the errors are inevitable in the implementation

due to the �nite wordlength and the �nite block sequence length L while the

impulse response of IIR �lter Hd(z) has an in�nite length. A larger L yields

a smaller phase error but also a larger processing delay. The minimal phase

error is for L equal to the input sequence length, but in that case, the

processing delay is maximal.

3. Approximate Linear Phase Transfer Function

An approximate linear phase transfer function H(z) can be obtained

from a minimum phase odd-order elliptic IIR �lter He(z)

He(z) =
1

2
(Ha(z) +Hb(z)) (2)

where Ha(z) and Hb(z) are allpass transfer functions [17]

Ha

�
ej!

�
= ej'a(!)

Hb

�
ej!

�
= ej'b(!)

(3)

The allpass IIR �lters Ha(z) and Hb(z) are the causal allpass sub�lters,

and they can be designed using standard magnitude-only IIR �lter design

programs [17] because the poles of Ha(z) and Hb(z) are also the poles of

the odd-order elliptic IIR �lter He(z). This way, minimum phase IIR �lter

He(z) is obtained. The implementation of He(z) based on equation (2) is

shown in Fig. 4.

 
x[n]

Ha(z)

Hb(z)

 

 

y[n]

1/2
 

Fig. 4. Block diagram implementations of elliptic transfer

function He(z) =
1

2
(Ha(z) +Hb(z)) using allpass

�lters Ha(z) and Hb(z).
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The approximate linear phase transfer function H(z)

H(z) =
1

2

�
1 +Ha(z)Hb(z

�1)
�

(4)

can be derived from the minimum phase transfer function He(z)

H(z) = Hb(z
�1)He(z) =

1

2

�
1 +Ha(z)Hb(z

�1)
�

(5)

because for the allpass transfer function Hb(z), it can be shown that

Hb(z)Hb(z
�1) = 1, i.e. Hb(e

j!)Hb(e
�j!) = ej'b(!)e�j'b(!) = e0 = 1.

The causal implementation of the noncausal transfer function Hb(z
�1),

such as the realization based on the time reversed technique or the block

processing technique, requires a processing delay, say m samples. Therefore,

the causal implementation of the transfer function H(z) requires also the

processing delay of m samples

z�mH(z) =
1

2

�
z�m +Ha(z)

�
z�mHb(z

�1)
��

(6)

where z�mHb(z
�1) is implemented using the causal �lter Hb(z) while the

delay z�m is the delay produced by the LIFO registers.

The causal implementation of an approximate linear phase transfer func-

tion is shown in Fig. 5, whereHb(z
�1) is implemented employing causal �lter

Hb(z) as shown in Figs. 6 and 2.

 
x[n]

Ha(z) z-m Hb(1/z)

z-m

 

y[n]

1/2
 

Fig. 5. Block diagram implementations of approximate linear phase
transfer function using allpass �lters Ha(z) and Hb(z).

x[n]
LIFO Hb(z) LIFO

y[n]y[-n]x[-n]

Fig. 6. Block diagram implementations of noncausal transfer function
Hb(z

�1) using the causal �lter Hb(z) and time reversed technique.
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The �lter frequency response can be expressed as a product of the am-

plitude function, cos (	 (!)), and the exponential factor, ej	(!),

H
�
ej!

�
=cos (	 (!)) ej	(!)

	(!) =
'a (!)� 'b (!)

2

(7)

where 	 (!) is the phase response. The passband is obtained for
��H �

ej!
��� �

1, i.e. for cos (	 (!)) � 1 or 	 (!) � 0, while
��H �

ej!
��� � 0, or cos (	 (!)) �

0, or 	 (!) � �=2 gives the stopband. Evidently, an equalripple behavior of

the amplitude response produces simultaneously an equalripple behavior of

the phase response and vice versa, as it is shown in Fig. 7.

The passband phase tolerance � can be expressed in terms of the

maximal passband attenuation Ap (dB)

� = cos�1(10�Ap=20) (8)
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Fig. 7. Passband phase tolerance � in rad vs. maximal
passband attenuation Ap in dB for approximate
linear phase �lters.

A very small passband attenuation yields a very small deviation of the

phase response from the linear function. This implies that an EMQF �lter

(Elliptic Minimal Q Factor) [17], that has a very small passband ripple, is

an excellent choice for designing the approximate linear phase �lter.

4. Time Reversed Technique

From sections 2 and 3, it is evident that for the exact linear phase

or for the approximate linear phase design, the noncausal �ltering has to be
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performed. The time reversed technique can be used for the realization of the

noncausal �lter Hb(z
�1) using causal �lter Hb(z), Fig. 6. The advantages of

using time reversed IIR �lter technique versus FIR �lters were presented in

[10], [11], [12], [13], [14], [3]. The connection of �lters Ha(z) and �lter Hb(z)

realized using the time reversed technique is also called a zero-phase �lter

and it has an exact phase linearity. The MATLAB implements this zero-

phase �lter using filtfilt.m �le. After �ltering in the forward direction

using Ha(z), the �ltered sequence is then reversed and run back through the

same �lter Hb(z)=Ha(z). The resulting sequence has a precisely zero-phase

response, and the �lter order is doubled, jHa(z)j
2
. Care is taken to minimize

startup and ending transients by matching initial conditions. The length of

the input sequence must be more than three times the order of the �lter

Ha(z).

5. Block Processing Technique

The block processing technique can be used for real-time implementa-

tions of the noncausal �lter Hb(z
�1) using causal �lter Hb(z). It can be used

for the processing of the in�nite length sequences or very long �nite input

sequences [15]. The input sequence is divided into L�length sequences and

each sequence is �ltered separately as shown in Figs. 1 and 2. The noncausal

�ltering using Hb can be performed before [15] or after [11], [12], [13], [14]

�lter Ha. The storage and processing delay is smaller for a smaller L.

Powell and Chau have devised two methods [15]: (1) overlap-save and

(2) overlap-add method. The causal transfer function Ha(z) can be also im-

plemented using the block processing technique, but without LIFO registers,

and this way Powell and Chau realize a limit cycle free implementation [15].

When a sine input sequence is used, the total harmonic distortion due

to the �nite sequence length L depends also on the numerator associated

with Ha(z) or Hb(z) [18].

6. FIR Implementation of Allpass Sub�lter

It is shown in section 3 that we can replace the block processing tech-

nique by an appropriate FIR sub�lter. The FIR sub�lter is created using

the main part of the impulse response of the IIR allpass �lter whose trans-

fer function is Ha(z)Hb(z
�1) where Ha(z) and Hb(z) are allpass functions

from the minimum phase solution. By employing the �nite length FIR �lter

we approximate the in�nite length impulse response of the IIR �lter. The

length of this FIR �lter can be larger than the length of the optimal linear
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phase FIR �lter. Moreover, the phase response is only approximately linear.

The phase tolerance is smaller for the higher-order FIR �lters.

The best cost-e�ective �lter implementation employs the allpass �rst-

order and the second-order sub�lters, because it requires the minimal number

of multipliers per sub�lter. Furthermore, the exact and approximate linear

phase transfer function can be implemented using the allpass sub�lters as

shown in Figs. 4 and 5. Hence, we analyze the impulse response of the

�rst-order, H1(z), and the second order, H2(z), allpass IIR sub�lter

H1(z) =
p� z�1

1� pz�1

H2(z) =
�2 � 2� cos � + z�2

1� 2� cos � + �2z�2

(9)

The impulse response of the �rst-order allpass IIR sub�lter, h1(n), can

be expressed in the following form

h1[n] = pn
�
p� p�1

�
u[n] + p�1�[n] (10)

where u[n] is the unit step sequence and �[n] is the unit impulse sequence.

The impulse response of the �rst-order allpass IIR sub�lter is a decreasing

function in n as shown in Fig. 8 for three di�erent poles p, jpj < 1. The im-

pulse response decreases faster for poles p � 0 due to the factor pn, while the

impulse response is very small for poles p � �1 due to the factor
�
p� p�1

�
.

For a given pole p, the magnitude of the impulse response is smaller

than a prescribed acceptable error �n

jh1[ne]j � �n; ne > 1 (11)

We �nd that the nth-sample satisfying condition (11) can be calculated as

ne

ne �

log

�
�n

p�1 � p

�
log (p)

(12)

Alternatively, for a given ne, we can derive the pole value that yields

the maximal amplitude of the impulse response

jh1[ne]jmax = 2

s
(ne � 1)ne�1

(ne + 1)ne+1
; (13)
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Fig. 8. Impulse response of the �rst-order allpass transfer function H1(z) =

(p� z�1)(1� pz�1): the amplitude of the impulse response at n = 20

for p = 0:95 is larger than the amplitude of the impulse response for

p = 0:9 (dotted line) and p = 0:99 (dashed line).

for

p =

r
ne � 1

ne + 1

The impulse response of the second-order allpass IIR sub�lter, h2(n),

can be expressed in the following form

h2[n] =�
�2�[n]+

+ �n
�
1� ��2

��
�2
�((n+ 1) �)

sin(�)
�

sin((n� 1) �)

sin(�)

�
u[n]

(14)

The impulse response of the second-order allpass IIR sub�lter is a sinu-

soidal function with a decreasing amplitude, as shown in Fig. 9, for three

di�erent pole magnitudes �, j�j < 1. The impulse response decreases faster

for poles with � � 0 due to the factor �n, while the impulse response is very

small for poles with � � �1 due to the factor
�
�� ��1

�
.

For a given pole pair p1 = �ej�, p2 = �e�j�, the magnitude of the

impulse response is smaller than a prescribed acceptable error �n

jh2[ne]j � �n; ne > 1 (15)

We �nd that the nth-sample satisfying condition (15) can be approximately
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calculated as ne

ne >

log

�
�n

2 (��1 � �)

�
log (�)

(16)

Alternatively, for a given ne, we can derive the pole value that yields

the maximal amplitude of the impulse response

jh2[ne]jmax � 4

s
(ne � 1)ne�1

(ne + 1)ne+1
; (17)

for

� �

r
ne � 1

ne + 1

It should be noticed that the derived relations are only approximate

since the impulse response is a sinusoidal function and we assume that the

argument � is such that at ne a sinusoidal function has its maximum.
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Fig. 9. Impulse response of the second-order allpass transfer function H2(z) =

(�2 � 2� cos � + z�2)(1� 2� cos � + �2z�2), � = ��=5: the amplitude of

the impulse response at n = 20 for � � 0:95 is larger than the amplitude

of the impulse response for � = 0:9 (dotted line) and � = 0:99 (dashed

line).

The impulse response amplitude of the second-order �lter is approxi-

mately two times larger than the impulse response amplitude of the �rst-

order �lter for � = p.
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7. FIR Implementation of Noncausal Sub�lter

A FIR �lter can be used to implement the noncausal allpass function

Hb(z
�1), rather than the whole allpass function Ha(z)Hb(z

�1). The length

of this FIR �lter can be much smaller than the length of the optimal linear

phase FIR �lter while the storage requirement is smaller than the storage

of block processing technique. The number of multipliers of FIR �lter is

increased, but it is still smaller than it appears in optimal linear phase FIR

�lters.

The allpass functions Ha(z) and Hb(z) can be calculated using a simple

procedure:

� use a standard IIR �lter design program for elliptic IIR transfer function,

� order the poles according to the increasing modules,

� H�(z) encloses the real pole and then every second conjugate complex

pair, and

� H�(z) encloses the remaining poles.

We can arbitrarily use: Ha(z) = H�(z) and Hb(z)=H�(z), or Ha(z) =

H�(z) and Hb(z)=H�(z). The minimal order of the FIR �lter that approx-

imates Hb(z
�1), nFIR, is obtained when the impulse response of Hb(z) has

the minimal value for n � nFIR. The pole magnitude of the second-order

allpass transfer function, �, that produces the maximal impulse response at

the n�th sample versus n, is larger than 0:9 for n > 10, as shown in Fig.

10. Usually, the elliptic transfer function has a complex pole-pair with the

largest �. Therefore, we choose for Hb(z) a transfer function H�(z) or H�(z)

that does not contain the pole with the largest �.

For example, for a 12-bit wordlength and the halfband speci�cation

(the stopband edge frequency Fa = 0:28, the minimal stopband attenuation

Aa = 46 dB) and the approximate linear phase design, the impulse response

of Hb is smaller than the prescribed acceptable error (2�12) for ne = 45,

while for Ha we �nd ne = 177. Therefore, Hb, used as the time-reversed

�lter, gives a much smaller L-length sequence, L = 45 and the processing

delay is 4L = 180.

The order of the FIR implementation of noncausal sub�lter is nFIR =

45. The order of the FIR implementation of allpass �lter is larger than 177.

The order of the optimal linear phase FIR �lter, calculated using MATLAB

program (remez), is nFIR = 53. For exact linear phase IIR �lter, Ha =

Hb as in [15], we �nd ne = 75 (�max = 0:7956) and the processing delay

is 300 samples. The optimal FIR �lter requires 26 multipliers while the

approximate IIR realization requires only 4 multipliers. The phase tolerance
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Fig. 10. The pole magnitude of the second-order allpass transfer function, �,
producing the maximal impulse response at the nth sample.

and the group delay for the approximate linear phase IIR �lter are shown in

Figs. 11 and 12.
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 / 
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f

Fig. 11. Group delay (samples) for L = 45 and 12-bits wordlength.

8. Design Example and Comparison

In order to compare the complexities and properties of the approxi-

mate linear-phase IIR �lters satisfying magnitude speci�cation, we take as

an example the halfband �lter requirements: the stopband edge frequency
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Fig 12. Phase tolerance for L = 45 and 12-bits wordlength.

Fa = 0:28, the passband edge frequency Fp = 0:22, the minimal stopband

attenuation Aa = 46 dB, the maximal passband attenuation Ap = 0:05 dB,

the approximate linear phase in the passband, the 12-bits data wordlength,

and the 10-bits �lter coe�cient wordlength. We determine the transfer func-

tions H�(z) and H�(z) using EMQF �lter design procedure [17] and obtain

H�(z) = z�1
�1 + z�2

1 + �1z�2
�2 + z�2

1 + �2z�2
;

�1 =
1

22
+

1

23
+

1

26
= 0:390625

�2 = 1�
1

23
+

1

26
= 0:890625

H�(z) =
�3 + z�2

1 + �3z�2
�4 + z�2

1 + �4z�2
;

�3 =
1

23
�

1

28
= 0:12109375

�4 =
1

2
+

1

23
+

1

25
+

1

27
= 0:6640625

Because �2 > �4, we use Ha(z) = H�(z) and Hb(z) = H�(z).

8.1. FIR Implementation of Noncausal Sub�lter

We �nd the 12-bits data wordlength impulse response of Hb(z). Ac-

cording to section 7, we select the �rst 45 nonzero samples of the im-

pulse response and we create the reversed sequence; this new sequence,

h[n], can be used to �nd the FIR �lter that approximate the noncausal

IIR �lter z�45Hb(1=z): h[n] = [0.000244140625, 0, �0:000244140625, 0,

0.00048828125, 0, �0:00048828125, 0, 0.0009765625, 0, �0:00146484375, 0,

0.001953125, 0, �0:0029296875, 0, 0.004638671875, 0, �0:0068359375, 0,

0.01025390625, 0, �0:015625, 0, 0.0234375, 0, �0:035400390625, 0,
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0.053466796875, 0, �0:08056640625, 0, 0.12158203125, 0, �0:183349609375,

0, 0.274169921875, 0, �0:3935546875, 0, 0.428955078125, 0, 0.720703125, 0,

0.079833984375].

We quantize the coe�cients of h[n] to 10-bits and we use the last 27

nonzero quantized samples. We have used this new sequence, hq [n], to

�nd the FIR �lter that approximate the noncausal IIR �lter z�27H�(1=z):

hq [n] = [�0:0068359375, 0, 0.0107421875, 0, �0:015625, 0, 0.0234375, 0,

�0:03515625, 0, 0.0537109375, 0, �0:0810546875, 0, 0.1220703125, 0,

�0:18359375, 0, 0.2744140625, 0, �0:3935546875, 0, 0.4287109375, 0,

0.720703125, 0, 0.080078125]:

HFIR(z) =� 0:0068359375 + 0:0107421875z�2 � 0:015625z�4

+ 0:0234375z�6 � 0:03515625z�8 + 0:0537109375z�10

� 0:0810546875z�12 + 0:1220703125z�14 � 0:18359375z�16

+ 0:2744140625z�18 � 0:3935546875z�20 + 0:4287109375z�22

+ 0:720703125z�24 + 0:080078125z�26

For the implementation of Ha(z), we use the �rst-order allpass sections

Ansari-Liu from [19]. There are three types of Ansari Liu �rst-order sections,

type a; b and c [19], which behave di�erently according to overow. We use

the appropriate scaled input and output sequences to prevent the overow

e�ects: 1=2 for implementing
�
�1 + z�2

�
=
�
1 + �1z

�2
�
by the �rst-order sec-

tion Ansari-Liu type a and c; while the scaling factors is 1=25 for type a and

1=24 for type c in the section
�
�2 + z�2

�
=
�
1 + �2z

�2
�
. The scaling factors

for sections type b are 1.

The �lter performances have been tested on the basis of two methods:

(1) unit impulse input and FFT of the �lter response, and (2) swept sinu-

soidal input and measured sinusoidal output. The characteristics obtained

for the impulse input have larger variations in amplitude than the charac-

teristics obtained for the swept sinusoidal signal as shown in Figs. 13, 14

and 15. The results are obtained by simulation using 10-bits for coe�cients

and 12-bits for signals. From Figs. 13, 14 and 15, it is evident the choice of

the section type is very important, and the best results are obtained with

the sections Ansari-Liu type b.

The phase linearity is demonstrated in Fig. 16, where the group delay

of (z�26 + HFIR(z)Ha(z)) for the passband is displayed. Evidently, the

group delay variations in the passband are very small and can be neglected

in practice (group delay variation << 1 sample).
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Fig. 13 Spectrum of the �ltered signal obtained for impulse input (dotted line) and
the amplitude frequency characteristic obtained for the sinusoidal input

(solid line): (z�26+HFIR(z)Ha(z)), coe�cients quantized to 10 bits, signal

length 256 samples and 12-bits wordlength, Ha(z) implementedwith Ansari-

Liu �lter type a.

A new linear phase design has to be compared with optimal linear phase

FIR �lter. The optimal linear phase FIR �lter of the order 53 has been de-

signed, and the results are displayed in Fig. 17. The optimal FIR and

(z�26 + HFIR(z)Ha(z)) have the same average group delay = 26, and ap-

proximately the same variation of the attenuation in the passband.

8.2. Time Reversed and Block Processing Technique

We have used the �rst-order sections Ansari-Liu type b in the time

reversed and block processing techniques. Spectrum of the �ltered signal

obtained for the impulse input has a larger variation than the �lter amplitude

characteristic measured by the sinusoidal input as shown in Figs. 18 and 19.

The simulations have been performed for Ansari-Liu sections type b with

10-bits for coe�cients and 12-bits for signals. The passband attenuation

is almost ideal with much smaller ripple than in implementations with FIR

�lters. The number of multiplications per output sample is also several times

smaller. With the L-length sequence of block processing technique reduced

from L = 45 to L = 27 the passband attenuation is insigni�cantly increased

but the processing delay is approximately two times smaller.
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Fig. 14. Spectrum of the �ltered signal obtained for impulse input (dotted line) and
the amplitude frequency characteristic obtained for the sinusoidal input

(solid line): (z�26 + HFIR(z)Ha(z)), coe�cients quantized to 10 bits, sig-

nal length 256 samples and 12-bits wordlength, Ha(z) implemented with

Ansari-Liu �lter type b.

9. Conclusion

In this paper we review the exact and approximate linear phase IIR �l-

ter designs and the usage of time-reversed and block processing techniques.

We introduce the new design approach based on the classical approximat-

ing functions (elliptic, Butterworth and Chebyshev type functions). Using

allpass IIR sub�lters obtained from the minimal phase solution, we develop

a causal �lter which approximates simultaneously a constant amplitude re-

sponse and an exact or approximate linear phase response. The procedure

for the calculation of coe�cients is based on the procedure for designing clas-

sical IIR �lters. We have shown that, by a proper selection of the poles of the

�lter implementing the noncausal IIR �lter, the error of the �nite represen-

tation of the in�nite impulse response has a minimal value. The noncausal

IIR sub�lter is implemented employing an IIR causal sub�lter and LIFO

registers or FIR sub�lters. The application of the proposed design method

is demonstrated on the halfband �lter example and the e�ects of the �nite

wordlength e�ects have been taken into account.

Design method presented in this paper provides a simple way to reach

simultaneously the selective amplitude characteristic and approximately lin-

ear phase. The computation procedure does not require any optimization
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Fig. 15. Spectrum of the �ltered signal obtained for impulse input (dotted line) and
the amplitude frequency characteristic obtained for the sinusoidal input

(solid line): (z�26 + HFIR(z)Ha(z)), coe�cients quantized to 10 bits, sig-

nal length 256 samples and 12-bits wordlength, Ha(z) implemented with

Ansari-Liu �lter type c.
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Fig. 16. Group delay of (z�26 +HFIR(z)Ha(z)): FIR implementation of noncausal
sub�lter and IIR implementation of causal sub�lter.

and therefore is very fast.
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Fig. 17. Spectrum of the �ltered signal obtained for impulse input (dotted line) and
the amplitude frequency characteristic obtained for the sinusoidal input

(solid line): optimal linear phase FIR �lter, coe�cients quantized to 10

bits, signal length 256 samples and 12-bits wordlength.

0 0.05 0.1 0.15 0.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

IIR double filtering

0 0.1 0.2 0.3 0.4
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

(Ansari type b)

Fig. 18. Spectrum of the �ltered signal obtained for impulse input (dotted line) and
the amplitude frequency characteristic obtained for the sinusoidal input

(solid line): time reversed technique, coe�cients quantized to 10 bits, signal

length 256 samples and 12-bits wordlength.
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Fig. 19. Spectrum of the �ltered signal obtained for impulse input (dotted line) and
the amplitude frequency characteristic obtained for the sinusoidal input

(solid line): block processing technique, coe�cients quantized to 10 bits,

signal length 256 samples and 12-bits wordlength.
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