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APPLICATION OF THE CLOSED CURRENT IN

POLARISAED MEDIA PHENOMEN FOR DEVELOPING

OF INTEGRATED POWER SUPPLIES

Alexey Levitsky, George Turchaninov

and Vladimir Zasemkov

Abstract. The application of the steady-state closed electrical current arising
in the polarized nonhomogeneous media phenomenon (SCECAP) for manu-
facturing of the integrated power supply is considered. SCECAP is proved
theoretically via algebraization of a basic system of partial di�erential equa-
tions. The discrete model of the integrated power supply is constructed. The
results of computer account of the power supply discrete model with use of
the gallium arsenide monocrystalline electrical characteristics are given. The
output about possibility of creation of the power supply designed on the basis
of SCECAP is in summary intended for microelectronics applications.

1. Introduction

Well{known in classical physics thermoelectric phenomena are excited
in nonhomogeneous media by the outer temperature �eld [1]. But as we
have shown before, if the electrically nonhomogeneous media are polarized,
there the macroscopic closed electric current and temperature �eld can be
excited in media. Necessary condition of this phenomenon is noncollinearity
of the polarizing �eld and the electric conductivity �eld [2], [3]. We have
resumed that the thermoelectric phenomena possess the cause{consequence
reversibility with respect to external temperature and electric �elds.

In this paper we consider application of the closed current in polarized
media phenomenon for developing of integrated power supplies. In section
2 of the paper the analytical proof of existence of the closed electric current
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in polarized media is developed. In section 3 we consider a discrete model
of the integrated power supply. One can �nd easily the cause of the closed
current arising in this model. Results of computing done for active medium
with electric features of gallium arsenide are presented and speculated in
section 4.

2. Analytical theory

We consider the closed reference system F = ff(rf ) 2 F g, where rf
is the cartesian coordinates of an element f from F . Let the following
properties characterize F :

(�) F is electroneutral in whole, i.e. there are equal amounts of im-
movable positive charges (cations) and mobile negative charges (electrons)
in F ;

(�) The density gradient of the mobile electric charge carriers r� takes
place in F . It may be caused for example, by variable donor doping of
semiconductor medium. Therefore there is an electric conductivity nonho-
mogeneity in F ;

(
) F is isotropic. In particular the dispersion law of free carriers is
isotropic and square;

(�) The electron mobility � doesn't depend on space coordinates.

The properties (
) and (�) essentially simplify the next deduction. How-
ever the results to be obtained don't overlay anisotropic media. It's proper
to notice also that phenomena developed here take place in F under any
electric �eld above zero.

In view of the system F is an electrically nonhomogeneous one, there
the internal electric �eld has been established. In spite of that F remains
in the thermal equilibrium state. Let now F to be polarized by the outer
electrostatic �eld. After the electri�cation process has been �nished F passes
into a new steady state. This state will be a subject of our analysis.

In general, we suppose that the electric current may 
ow in the polarized
system F . Therefore, a thermal equilibrium state of F is discarded in its
�nal stage as some possible but unproved case. Starting from this describe a
steady state of polarized F with the following system of partial di�erential
equations
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"0rr' =�� �+ (1)

J =� ��r'+
k�

e
r(�T ); (2)

where "0 - is the dielectric permittivity of vacuum, ' is the electric potential,
�+ is the immovable positive charges density responding to the condition of
electrical neutrality of F

Z
F

�df =

Z
F

�+df; (3)

J is the electric current density, k is Boltzmann's constant, and e is the
elementary charge. Equation (1) is the Poisson equation, and equation (2)
presents the formula of an electron current consisting of two parts: drift and
thermodi�usion ones. The well{known Einstein equation

D =
kT�

e

has been utilized in the right{hand side of equation (2) for the di�usion
coe�cient D to be uncovered. The electron gas temperature T equals to a
temperature of the system F , e.g. to the crystal lattice temperature at the
thermal equilibrium state. And it takes on a value of the e�ective temper-
ature of a non{equilibrium electron gas at the non{equilibrium process [4].
Finally, let us complete equations (1) and (2) with the polarization P vs
electric �eld linear relation

P = �"0�r'; (4)

where � is the medium polarizability.

The boundary conditions are de�ned in the form of an electric potential
distribution '(S) at the external surface S of F . With the help of this
distribution one can specify the outer electrostatic �eld. On the other hand,
the '(S) distribution takes constants of integration of equation (1). Now
we'll show that equation (2) when its left-hand side equals zero, is integrable
with the only constant of integration. One can transform the right{hand side
of equation (2) into the Pfa� ��d'+kT

e
d� form of two independent variables

and then dividing by �; into a total di�erential. Hence the only constant of
integration is required for resolving of the appropriate pfa�an equation [5].
This constant can be de�ned with the help of the electroneutrality condition
(3).
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The goal of our analysis is to detect the conditions of 
owing of the
macroscopic electric current J in the polarized system F . For this goal to
be reached it is not obligatory to solve jointly the set of equations (1) { (4)
in F . Our simple method is as follows. Let as reason ex adverso. One can
assume that when a polarizing process is completed the system F returns
back to thermal equilibrium with J= 0. Then from equation (2), bearing in
mind the property (
), one can output

8f 2 F )r'(f)�r�(f) = 0: (5)

Further consider equation (4). The polarization means sharing of oppo-
site electric charges. The vector P is situated along the direction of charge's
shift [6]. Therefore, P is collinear to the vector r(� � �+). From this and
equation (4) one can formulate the second condition likely (5), as follows:

8f 2 F )r'(f)� [r�(f)�r�+(f)] = 0: (6)

Compare (5) and (6), one can resume that collinearity of all the vectorial
�elds �r', r� and r�+ gives a necessary condition of the electric current
in polarized system F to be absent. And vice versa, non-collinearity of
any two vectors from above mentioned ones yields an electric current in the
system. It is rather not obvious that above vectors can be non-collinear
because the �elds �r' and r� are in linear dependence to one another
when F is at thermal equilibrium. One can �nd the only possibility to
ensure non-collinearity of the mentioned vectors. This possibility is to set
such a distribution of '(S) that �r' and r�+ should be mutually non-
collinear on S. For example, let S and S+ are mutually intersect, where
S+ is the boundary surface of two subsystems in F with di�erent quantities
of �+. Then it is su�cient that in vicinities of the line S\S+ should be
'(S) = const. Then a macroscopic electric current J should 
ow in F .
Moreover, J is closed as F is a closed system. One can see making use of
the common theory of autonomic systems that if an electric current arises
in any part of the system F , then all the system F will be �nally �lled with
lines of an electric current with the exception of singular points [7].

The physical interpretation of the arising closed electric current in F

is as follows [2], [3]. When the system F is brought to the thermal equi-
librium state both drift and thermodi�usion components of J are mutually
compensated. In the developed case the detail balance postulate [8] is bro-
ken with two mutually crossed potential thermodynamic powers �r' and
r(�T ) (see equation (2)). In consequence of this the drift and thermodif-
fusion components of J are spatially separated and form an electric current
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loop. It is evident that a quantity of J depends on a depth of penetration of
the outer electric �eld into F . This depth increases as an electric conductiv-
ity of F decreases. In addition, an electric conductivity of F is included into
equation (2) via �. Therefore, one can resume that the phenomenon being
investigated depends on an electric conductivity of F in a complicated way.

One cannot avoid taking into account dissipation processes when macro-
scopic 
uxes of charged particles are considered. Various possible compen-
sating processes are concluded in [3] which put down to zero either locally
or integrally the energy dissipation as a result of an electron 
ow interaction
with an outer electric �eld as well as because of the internal friction in the

ow itself. It was shown there that the total compensation can be achieved
in a closed electric current only.

Finally, focus our attention to the following special case. Let the '(S)
distribution to be such that the condition (5) is valid. Then the �nal state
of F will be a thermal equilibrium one in which the macroscopic electric
current is absent. That case is commonly cited as the one-dimensional one.

3. Digital model

Our goal now is to deduce the same results as above with the help of
a discrete model of the system F . We shall compose this model making
use of the �nite di�erences approximation method. Let us consider a three{
dimensional electroconductive system F , having form of cube with the edge
length L, the nodes number of 3D rectangular proportional grid N3, and
the spacing between neighboring nodes along an edge l. We again use the
method of deduction ex adverso. Let the left-hand side of equation (2) is
zeroth, that is a feature of the thermal equilibrium state. Then replace
equation (1) and simpli�ed as above equation (2), with the following system
of algebraic equations:

'i�1;j;k + 'i+1;j;k + 'i;j�1;k + 'i;j+1;k

+'i;j;k�1 + 'i;j;k+1 � 6'i;j;k =
l2

"0
(�i;j;k � �+i;j;k); (7)

(�i;j;k + �i+1;j;k)('i;j;k � 'i+1;j;k) = 2t(�i;j;k � �i+1;j;k); (8)

(�i;j;k + �i;j+1;k)('i;j;k � 'i;j+1;k) = 2t(�i;j;k � �i;j+1;k); (9)

(�i;j;k + �i;j;k+1)('i;j;k � 'i;j;k+1) = 2t(�i;j;k � �i;j;k+1); (10)

where the node indices i, j, k are numbered as 1; : : : ; N ; t = kT=e. First
derivatives of �r' and r� in equations (8)-(10) are approximated by the
right di�erence derivatives. We don't use central di�erence derivatives be-
cause they doesn't permit to de�ne currents 
owing across border nodes of



66 Facta Universitatis ser.: Elect. and Energ. vol. 12, No.1 (1999)

the grid. Let us also de�ne border conditions as the set of electric potentials
'0;j;k, 'N+1;j;k, etc.

The system (7)-(10) consists of N3 + 3N2(N � 1) equations. Elec-
tric potentials and mobile negative charge densities in nodes play a role
of unknowns in this equations. Transferring all the members of equations
(7)-(10) into their left-hand sides, we obtain the set of functions Fi(i =
1; :::; N3 +3N2(N � 1)), each of them being equal to zero after roots substi-
tuting. It follows from equations (7)-(10) that functions Fi are di�erentiable
with respect to every of 2N3 independent variables in F . Therefore, one
can analyze Jacobian of any subset of 2N3 functions from the total set of
Fi. It is found that every Jacobian belonging to any subset from Fi doesn't
equal to zero. (Because of space de�cit we don't present here the proof of
this statement, which is however elementary.) This yields that the total set
of Fi forms a system of N3 + 3N2(N � 1) independent functions. Hence
all equations (7)-(10) are mutually independent. When N is a great enough
value, the number of equations is twice as great as the number of indepen-
dent variables. It follows now that the system of equations (7)-(10) is a
noncompatible one and therefore, it cannot specify the thermal equilibrium
state of F .

Let now the condition (5) is ful�lled in F . Then equations (8)-(10)
are identical when relative to the same triple of indices. But the following
stipulation should be taken into account. The number N must be great
enough for di�erence between densities �i;j;k on the one hand, and �i+1;j;k,
�i;j+1;k, �i;j;k+1 on the other hand, to be disregard. This stipulation is
not required if the central di�erence derivative approximation is used. So,
if equations (8)-(10) are identical, the full system of equations (7)-(10) is
resolvable. Then the �nal state of the polarized system F is the thermal
equilibrium state. Mutual collinearity of the vector �elds �r' and r�+ in
F yields the same result when combined with the condition (6).

Assume now that local currents 
ow through nodes of the grid in F .
We'll denote this current by Ji;j;k;t, where t takes values 1, 2, 3 in accordance
with a dimensionality of the model. Apply the �nite di�erences approxima-
tion method to the total equation (2), with non-zeroth left-hand side. Here
we must make some clari�cations.

(") Now T in equation (2) is the e�ective temperature, that depends on
the space coordinates in general. Leading T from under the operator "nabla"
out, we state temperature to be constant in F and therefore, simplify the
model. This simpli�cation is not essential in thin �lms structures because
of good heat transfer.
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(�) The Einstein relation used in equation (2) takes place both in the
hydrodynamic and quasi{hydrodynamic approximations [4]. So application
of equation (2) to a non{equilibrium process is reasonable.

(�) We have assumed that mobility of charge carriers is not depend on
an electric �eld value. This simpli�cation can be violated closely to external
surface of F only.

(�) A constant of integration of equation (2) must be de�ned now in
another way as compared with it under equilibrium conditions because the
statistics of non-equilibrium electron gas can deviate essentially from the
Fermi statistics.

The above mentioned restrictions are not of importance in our deduction
but simplify matter essentially.

Taking into account the above remarks write the following equations
instead of equations (8){(10):

2t(�i;j;k � �i+1;j;k)� (�i;j;k + �i+1;j;k)('i;j;k � 'i+1;j;k) =
Ji;j;k;1

�
; (11)

2t(�i;j;k � �i;j+1;k)� (�i;j;k + �i;j+1;k)('i;j;k � 'i;j+1;k) =
Ji;j;k;2

�
; (12)

2t(�i;j;k � �i;j;k+1)� (�i;j;k + �i;j;k+1)('i;j;k � 'i;j;k+1) =
Ji;j;k;3

�
: (13)

The set of equations (7), (11)-(13) of the total number N3 + 3N2(N �
1) includes 2N3 + 3N2(N � 1) unknowns. It can be shown that this set
of equations is compatible and indeterminate. For avoiding of the in�nite
solutions number of equations being investigated, we shall add to equations
(7), (11){(13) one more, namely the continuity equation r � J = 0. In a
discrete model the last formula is converted into N3 equations as follows:

Ji;j;k;1 + Ji;j;k;2 + Ji;j;k;3 + Ji�1;j;k;1 + Ji;j�1;k;2 + Ji;j;k�1;3 = 0: (14)

The set of equations (7), (11){(14) is compatible and determinate. It
means that the �nal state of the polarized system F , when any two vector
�elds of �r', r� and r�+ are mutually non{collinear, is a steady state.
Its main feature as for our research consists of the closed electric current

owing.

4. Digital computation

The above results were used in digital computation of an active device
possessing electrical features of monocrystalline gallium arsenide. We were
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based in our choice on the following. The well-known �eld-e�ect transistor on
GaAs presents a ready integrated device possessing the set of initial features
relevant for solution of our task. Those are: (i) The electrical conductivity of
GaAs varies within wide limits with using of appropriate doping technology;
(ii) An electric �eld formed by a transistor gate is su�cient for to overlay its
conducting channel; (iii) GaAs crystallizes in the cubic syngony; therefore,
its features are isotropic in a high degree. Hence above results are applicable
to the model based on GaAs features.

Fig. 1 illustrates schematically a cross-section of the developed device
discrete model. The working domain represents a right angled parallelepiped
with dimensions 14:14�3:535�0:1�m3 or 1:414�0:3535�0:1�m3. The bold
line on Fig. 1 shows a cut of the working domain. The electric current doesn't

ow through this cut. This element of design weakens local closed currents,
so that the total current 
ows around the above cut. The electron mobility
is taken to be equal 8500 cm2=V �s, as in GaAs [10]. Broken lines on Fig. 1
mark the four cross{sections A, B, C, D, which the computed current crosses
through. Two one{halfs of domain ordered at di�erence sides of the cut are
doped in a di�erent degree from 1013 to 1019 1=cm3. The gray region of the
domain (Fig. 1a) is always doped more heavily. Two polarizing electrodes
are situated upon the working domain along its opposite sides so that they
overlay the cross{sections B and D (Fig. 1b). The constant potential of 10
V is applied onto this electrodes, plus being on left. We have de�ned that in
the described structure the computed closed current always 
ows clockwise
around the cut.

We have used a two{dimensional grid of 100�100 nodes for modeling
the working domain. The electric properties of working domain are described
by equations (7), (11){(13), reduced to the two-dimensional forms. Equa-
tions (14) is disregarded. Nevertheless, the result is spontaneously a steady
state. The Newton process of lower relaxations was used in the iterative
process. The time interval � per one iteration step is dynamically changed
for the following condition to be ful�lled: the largest relative reduction of
free negative carrier density in any node is established as great as 1% per one
iteration step. So it is found that the product of � and coe�cient of lower
relaxations � is weakly dependent on �. We have taken from this � � 1.
For � = 0:001� results 10�14 � 10�15s. Such short real time intervals in-
crease essentially the total time of an iterative process. So 1:2�108 iteration
steps are required for modeling 5�10�7s of real transient process when strong
doping has been assumed. Iterative process is to be ended when the total
currents through cross{sections A, B, C and D become identical.
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Fig. 1. The view from above on the discrete model of the

working domain. Fig. 1a illustrates two regions of domain

denoted as white and gray, with various doping densities.

Placement of the polarizing electrodes is shown in Fig. 1b, in gray.

Some results of computing are presented in the Table below. The doping
densities are equal to 1019 and 1015 1=cm3. The length and the width specify
dimensions of the working domain. The current density is measured in the
cross{section A.

Table 1

Length, Width, Closed Current Density, Max.Electric

�m �m Current, A A=cm2 Field, V=cm

14.14 3.535 2:1 � 10�5 1:16 � 104 7:74 � 105

1.414 0.3535 9:5 � 10�7 5:37 � 103 1:29 � 106

14.14 3.535 9:2 � 10�6 5:21 � 103 1:10 � 106

3.535 14.14 2:2 � 10�4 3:14 � 104 2:43 � 105

3.535 14.14 1:6 � 10�4 2:25 � 104 4:60 � 105

One of results of produced numerical treatment is a great density of the
electric current in the device model. One can explain it by the imperfect
discrete model. The main imperfection as we can assume, is that there is not
taken into account concentration of the electric �eld lines at sharp angles of
polarizing electrodes. So we don't consider obtained results as terminal.
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5. Conclusion

In spite of the noted de�ciency of the discrete model and some simpli-
�cations used in section 3 we assume that the theoretical consideration as
far as the discrete modeling con�rm existence of the above investigated phe-
nomenon. So we resume that the phenomenon of arising of the macroscopic
closed electric current in polarized nonhomogeneous electroconductive media
can be used for integrated power supply development.
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