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ON TWO-DIMENSIONAL SHAPE RECOGNITION USING

MOMENT INVARIANTS AND AR MODELS
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and Srdjan Stankovi�c

Abstract. This paper is dedicated to the problem of two-dimensional (2D)
shape recognition from the point of view of possible optimization regarding
feature extraction and classi�cation methods. Moment invariants and sto-
chastic AR models are considered as feature extraction methods. For classi�-
cation, we analyze performance of the Bayesian parametric and nonparametric
classi�ers, as well as of the multilayer perceptron, applied as a nonparametric
classi�er. Experimental analysis is based on real data. Evaluation of the con-
sidered methods is done on the basis of the Bayes error estimates, calculated
on the corresponding data sets.

1. Introduction

In the computer vision theory, the problem of 2D shape analysis and
recognition has been treated either structurally or analytically [4]. The ar-
eas of application of 2D shape recognition include: classi�cation of blood
cells, chromosomes, corn kernels, industrial inspection, target recognition
[5], scene analysis [4] and modeling of biological systems [15]. The meth-
ods proposed for 2D shape description include either statistical approaches
based on the method of moments [1],[5],[7],[9],[12],[16], or the approaches
based on some functions derived from the boundary using Fourier analysis
[18], autoregressive (AR) models [8],[3],[2],[14] and wavelet transform [17].
In this paper, we experimentally analyze two feature extraction methods:
moment invariants and stochastic AR models. Namely, two di�erent groups
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of moment invariants and two di�erent types of AR models are considered.
In addition, this work is dedicated to the analysis of possible applications
of Bayesian parametric (linear and quadratic) and nonparametric (k�NN)
classi�ers, as well as of the multilayer perceptron (MLP), applied as a non{
parametric pattern classi�er, in the recognition of 2D shapes modeled by the
moments and AR models. A comparative experimental analysis is done on
the basis of real objects photographed by TV camera. Gray level images are
tresholded to obtain binary silhouettes. Contours are obtained by using an
original algorithm for contour extraction. In the case of moment invariants,
both silhouettes and contours are used for extracting feature vectors [12].
For the AR feature extraction method, parameter estimates are obtained
by using the non{recursive least square method (LS) [10], on the basis of
the coordinates of the given contour elements. The obtained parameter esti-
mates are used as feature vectors that are to be classi�ed. The classi�cation
errors, obtained by using the considered classi�ers and given feature extrac-
tion methods are evaluated by using the resubstitution method [6]. The
reason for using this method is a small number of available samples of the
real object shapes. Performance of the classi�ers is analyzed referred to the
appropriate Bayes error estimates obtained by a very accurate procedure
combining the resubstitution and the leave{one{out methods [6].

This work is organized as follows. The main principles of the moment
invariants and AR modeling of 2D shapes, are described in Section 2 and
3, respectively. Main characteristics of the Bayesian classi�ers and the mul-
tilayer perceptron are brie
y described in Section 4. A comparative exper-
imental analysis is presented in Section 5, while the conclusion is given in
Section 6.

2. Moments

In this paper, two feature sets, based on central moments, are con-
sidered: moment invariants [5], and Zernike moments [9]. Namely, Hu [7]
introduced seven nonlinear functions de�ned on regular moments which are
translation, scale and rotation invariant. These seven, so called moment in-
variants, expressed via normalized central moments, Eq. (1), are used in a
number of pattern recognition problems [5],[12]. Teaque [16] has suggested
the application of orthogonal moments based on the theory of orthogonal
polynomials to e�cient computation and image recovery. A class of such
orthogonal moments possessing the rotation invariance property are Zernike
moments [9]. Rotating the image does not change the magnitude of its
Zernike moments and they are used as rotation invariants for feature ex-
traction. These features can easily be computed up to an arbitrary high
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order. Another important property of Zernike moments is the ease of image
reconstruction from them [9]. To obtain scale and translation invariance, the
image is �rst subjected to a normalization process using its central moments.
The rotation invariant Zernike features are then extracted from the scale and
translation normalized image. Teaque [16] has shown relations among mo-
ment invariants, invariant Zernike features and central moments. To extract
features from binary images, where 2D stochastic function of contour points
f(xi; yi) is either 1 or 0, central moments of (p+ q) order are expressed by

�pq =
1

N

NX
i=1

f(xi; yi)(yi � y)p(xi � x)q ; (1)

where (x; y) are coordinates of the central point of the contour, and N is the
number of pixels. The central moments are normalized by the factor m =

�
(p+q+2)=2
00 . This normalization corresponds to having the total image power

always equal to unity. In this paper, a set composed of 11 Zernike moment
invariants expressed via central moments up to the 4th order (p + q � 4),
Eqs. (2) and (3) are used to obtain the feature vectors of 11 and 12 features
[12].
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MI10 =
250

�3
((�40 � 6�22 + �40)(4((�04 � �40) + 3(�20 � �02)

2)

�4(4(�31 + �13)� 3�11)
2)� 16(4(�04 � �40)

+3(�20 � �02))(4(�31 + �13)� 3�11)(�31 � �13))

MI11 =
30

�2
(4(�04 � �40) + 3(�20 � �02)(�02 � �20)

+4�11(4(�31 + �13)� 3�11))

(3)

The 11{dimensional feature vectors represent Zernike moment invari-
ants (Eqs. (2) and (3)) calculated for a silhouette. In order to take advan-
tage of the information content of both the boundary and the silhouette of a
2D shape, two sets of the �rst six Zernike moment invariants are computed,
Eqs. (2) and (3), (one set derived from the boundary and the other from
the silhouette). Applying this technique, 12{dimensional feature vectors are
obtained.

3. AR modeling of 2D contours

AR modeling applied to the classi�cation of 2D shapes has attracted
the attention of researchers in the �eld [8],[3],[2],[14]. The AR model of the
contour of a 2D shape can be, in general, represented as

xt = �+

nX
j=1

�jxt�j + �!t; (4)

where xt describes a point on the contour, �j (j = 1; : : : ; n), � and � rep-
resent the unknown parameters and !t is a zero-mean unit variance white
noise sequence. Depending on the adopted approach, xt can be either the
radial distance from a point inside the contour [8] or the x � y coordinate
vector [3],[2] possibly expressed as a complex number [14]. Accordingly, we
shall consider the following two types of AR models:

One{dimensional (1D) AR model. Parameters of the 1D AR model
are estimated from the samples of the boundary sequence using the conven-
tional LS method [10]. The LS estimates can be obtained as follows. De�ne
' as "the regression vector", which consists of radii samples of boundary
points (distance between the contour center and a boundary point), i.e.

�(t) = [�x(t� 1)� x(t� 2)� � � � � x(t� n)]T (5)
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the autocorrelation matrix

R(N) =
1

N

NX
t=1

�(t)�T (t)

[R(N)]ij =
1

N

NX
t=1

x(t� i)x(t� j); i � 1; j � n

(6)

and

f(N) =
1

N

NX
t=1

�(t)x(t): (7)

The one-step predictor for 1D model can be written as x̂ = �T � (linear
regression), where � = [�1; : : : ; �n] is the parameter vector. The criterion to
be minimized is de�ned as the sum of squares of the prediction errors

e =
1

N

NX
k=1

jx(k)� x̂(k)j2: (8)

The LS estimate of the parameter vector � is given by

�̂LS = R�1(N)f(N): (9)

In 1D case, the feature vectors consist of n features (�1; �2; : : : ; �n).
Namely, the number of features is equal to the order of the applied AR
model.

Two{dimensional (2D) AR model. The 2D AR model parame-
ters are estimated from the samples of x, y coordinates of the boundary
sequence by using the LS method, as described for 1D model. In this case,
the parameters �j (j = 1; : : : ; n) are, in fact, 2�2 coe�cient matrices, given
by

�j =

�
#1j �1j
#2j �2j

�
(10)

and a 2 � 1 process mean vector, �, i.e. E[x(k)] = �. The process mean
vector � and the model residual error covariance matrix, �, can be estimated
from
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In this case
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For given '(t), R(N), and f(N), the LS estimate of the parameter
vector is given by (9). The feature vector for classi�cation consists of the
following (2n+ 2) elements [2], [14]:

� 2n elements obtained as the sum of squares of # and � elements of the
coe�cient matrices �j ,i.e. 2n elements are

f�xj = #21j + #22j ; �yj = �21j + �22j ; j = 1; : : : ; ng

� An element de�ned as a combination of the mean vector � and the
covariance matrix �: � = �T��1�;

� An element de�ned as the sum of the eigenvalues of the estimated system
matrix As when the AR model is written in the state-space form [2],
[3], i.e.:

As =

2
6666664

�1 �2 �3 � � � �n�1 �n
I2 0 0 0 0
0 I2 0 0 0
0 0 I2 0 0
...
0 0 0 � � � I2 0

3
7777775

(12)

4. 2D shape classi�cation

Bayesian classi�er. Bayesian classi�er can be described by follows.
Let us consider c classes of the training data set, !i, i = 1; : : : ; c; described
by a posteriori probability functions P (!ijX). Bayes rule can be expressed
as follows, [4]

P (!ijX) =
P (!i)p(Xj!i)

p(X)
(13)
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where p(X) is the probability density function (pdf) of the sample X,
p(Xj!i) is the conditionally probability density function (cpdf), and P (!i)
is the a priori probability of the class !i. Bayesian classi�ers is based on the
Bayes decision rule: sample X is classi�ed in the class ! satisfying

P (!jX) = max
i�i�c

fP (!ijX)g: (14)

The Bayesian classi�er, described by the equation (14) can be used for
classi�cation under one of the following three conditions:

1. In case when cpdfs of all the training data set classes are completely
known.

2. With the assumption that cpdfs of the training data set classes belong
to the parametric distribution families with known functional forms
which are described by the �nite number of parameters that should be
estimated.

3. In case when the cpdfs of the training data set classes are estimated by
using some of the nonparametric procedures.

In the �rst two cases we obtain parametric classi�ers while in the third
case we obtain nonparametric ones.

Parametric classi�ers. In this paper, we assume that cpdfs of the
training data set classes belong to the Gaussian distribution class, with pa-
rameters to be estimated on the basis of training data. The Gaussian distri-
bution is completely described by only two parameters: mean vector (M) and
covariance matrix (�). Multidimensional Gaussian distribution is described
by the following equation

p(X) =
1

(2�)
n

2 j�j
1

2

exp
�
�

1

2
(X �M)T��1(X �M)

�
(15)

Quadratic classi�er is the optimal Bayesian classi�er in the case of the
classi�cation of Gaussian data [4],[6]. The quadratic discrimination function
has the following form

gi(X) =XT��1
i X � 2MT

i �
�1
i X +MT

i �
�1
i Mi

+ln j�ij � 2 lnP (!i)
(16)

An arbitrary sampleX is classi�ed into the class !i which gives the minimum
value of the discrimination function (16).
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Linear classi�er represents the Bayesian classi�er of the Gaussian data
with the assumption that all the classes of the training data set have the
same covariance matrix. The linear discrimination function can be described
as follows

gi(X) =MT
i �

�1X �
1

2
MT

i �
�1Mi + lnP (!i) (17)

Classi�cation is done by choosing the class with maximum value of the
discrimination function (17). We consider two versions of the linear classi�er:
piecewise and pairwise linear classi�er.

Piecewise linear classi�er. In this version, we use a common covariance

matrix, �, for all training data set classes, obtained by the following equation

� =
cX

i=1

P (!i)�i (18)

Pairwise linear classi�er. In the multi-class case, instead of using the
common covariance matrix for all the classes, we use the pairwise common

covariance matrix, �ij, for each pair of the training data set classes i and

j, obtained by the following equation

�ij =
P (!i)�i + P (!j)�j

P (!i) + P (!j)
(19)

Nonparametric classi�ers. A nonparametric classi�er does not rely
on any assumption concerning the structure of the underlying density func-
tion. Therefore, the classi�er becomes the Bayesian classi�er if the density
estimates converge to the true densities when an in�nite number of samples
is used. The resulting error is the Bayes error, the smallest achievable error
given the underlying distributions. The Bayesian error is a very important
parameter in pattern recognition, assessing the classi�ability of the data and
measuring the discrimination capabilities of the features even before consid-
ering what type of classi�er should be designed.

k-NN classi�ers are based on the nonparametric estimates of the
cpdfs by using the k �NN approach, which has the form [4],[6]

p̂(!ijX) =
k � 1

Ni�i(X)
(20)

where k is the number of nearest neighbors to the sample X from the class !i
of the training data set, Ni is the number of vectors in the class !i, and �(X)
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is the volume of the set that accompany k nearest neighbors to the sample
X from the class !i. The formulae for the volume calculation depend of the
distance measure that is used. In this paper, the Mahalanobis distance is
used [6]. Depending of what is assumed to have a �xed value for all of the
training data set classes, either the number of k nearest neighbors or the
volume �(X), we obtain two types of the k � NN classi�ers: "voting" or
"volumetric" k �NN classi�er, respectively.

"Voting" k�NN classi�er. In this case, by specifying the entire number
k of nearest neighbors to the sample X we specify, in fact, the same volume
�(X) for all of the training data set classes. The sample X is then classi�ed
to the class with the largest number of nearest neighbors of the entire number
k. In other words, the classi�cation is done by choosing the maximum value
of the discrimination function, given by [6]

gi(X) = ki;

cX
i=1

ki = k (21)

"Volumetric" k � NN classi�er. In this case, we assume the �xed
number of nearest neighbors for each of the training data set classes. The
estimates, given by (20), di�er only by the volume �i(X) of each class.
Including (20) in the likelihood ratio classi�er term that is derived from the
two{class Bayes decision rule [6]

� ln
p̂(Xj!1)

p̂(Xj!2)

!1
7
!2
� � ln

P (!2)

P (!1)
= � (22)

we obtain the following inequality for "volumetric" k � NN classi�er in
two{class case

� ln
(k � 1)N2�2(X)

(k � 1)N1�1(X)
= �n ln

d2(X
(2)
kNN ;X)

d1(X
(1)
kNN ;X)

� ln
N2j�2j

1

2

N1j�1j
1

2

!1
7
!2

� (23)

For the case of using the Mahalanobis distance, given by: d2i (Y;X) =

(Y �X)T��1
i (Y �X) , the volume �i(X) is given by: �i = �n=2��1(n=2 +

1)j�ij
1=2dni (where n is the number of features) [6]. If the a priori class

probabilities are equal, the decision is made according to the minimal volume
of the class.

Multilayer perceptron. Neural networks o�er a valuable alternative
to Bayesian classi�ers in evaluating a posteriori class probabilities for classi-
fying stochastic patterns. In contrast to the Bayesian parametric classi�er,



112 Facta Universitatis ser.: Elect. and Energ. vol. 12, No.1 (1999)

the "neural" classi�er makes no assumptions on the probabilistic nature of
the problem, and is thus universal in the sense that it is not restricted to an
underlying probabilistic model. Instead, it adjusts itself to a given training
data set by a training algorithm, and thus, can learn the stochastic prop-
erties of the speci�c problem. Multilayer perceptron (MLP), probably the
best known type of neural nets, with back{propagation training algorithm
[13] is used in this paper as a "neural" nonparametric pattern classi�er.

The typical back-propagation network always has an input layer, an
output layer and at least one hidden layer (typically one or two). Each layer
is fully connected to the succeeding layer. During training, information is
propagated back through the network and used to update the connection
weights. For the purpose of brief describing the basis back-propagation al-

gorithm, we shall accept a notation as follows: x
[s]
j - current output state of

jth neuron in layer s, w
[s]
ji -weight on connection joining ith neuron in layer

(s� 1) to jth neuron in layer s, and I
[s]
j - weighted summation of inputs to

jth neuron in layer s. A back-propagation element therefore transfers its
inputs as follows

x
[s]
j = f(I

[s]
j ) = f(

X
i

(w
[s]
ji x

[s�1]
i )) (24)

where f is traditionally the sigmoid function but can be any di�erentiable
function, see Fig. 1. The sigmoid function is de�ned as: f(z) = (1+e�z)�1.

Fig. 1. A typical back-propagation processing element

Suppose now that the network has some global error function E associ-
ated with it which is a di�erentiable function of all the connection weights in
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the network. The critical parameter that is passed back through the layers
and considered as a measure of the local error at processing element j in
layer s is de�ned by

e
[s]
j = �

@E

@I
[s]
j

= f 0(I
[s]
j )

X
k

(e
[s+1]
k w

[s+1]
kj ) (25)

Note that in (25), there is a layer above layer s; therefore, (25) can
only be used for non-output layers. If f is the sigmoid function, then its
derivative can be expressed as a simple function of itself as follows: f 0(z) =
f(z)(1� f(z)), which leads to the following form of (25)

e
[s]
j = x

[s]
j (1� x

[s]
j )

X
k

(e
[s+1]
k w

[s+1]
kj ) (26)

The summation term in (26) which is used to back-propagate errors is anal-
ogous to the summation term in (24) which is used to forward propagate
the input through the layers to the output layer, determine the error at the
output layer, and then propagate the errors back through the network from
the output layer to the input layer using (26) or more generally (25). The
aim of the training process is to minimize the global error E of the system

by modifying the weights. Given the current set of weights w
[s]
ji , we need

to determine how to increment or decrement them in order to decrease the
global error. This can be done by using a gradient descent rule as follows

�w
[s]
ji = �lcoef

@E

@w
[s]
ji

= lcoef � e
[s]
j x

[s�1]
i (27)

where lcoef is a "learning rate" coe�cient. Suppose a vector i is presented
at the input layer and suppose a teacher speci�es the desired output d. Let
o denote the actual output produced by the network with its current set of
weights. Then a measure of the error in achieving that desired output is given
by: E = 0:5�((dk � ok)

2), where the subscript k indexes the components of
d and o. From (25), the scaled "local error" at each processing element of
the output layer is given by

e
[o]
k = �

@E

@I
[o]
k

= �
@E

@ok

@ok
@Ik

= (dk � ok)f
0(Ik) (28)

As a summary, for given an input vector i and a desired output vector
d, we should do the following:
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1. Present i to the input layer and propagate it through to the output layer
to obtain an output vector o.

2. As this information propagates through the network, it will also set all
the summed inputs Ij and output states xj for each processing element
in the network.

3. For each processing element in the output layer, calculate the scaled
local error as given (28) and then calculate the delta weight using (27).

4. For each layer s, starting at the layer below the output layer and ending
with the layer above the input layer, and for each processing element in
layer s, calculate the scaled local error as given in (26), then calculate
the delta weight using (27).

5. Update all weights in the network by adding the delta weights to the
corresponding previous weights.

5. Experimental analysis

The experimental part of the work is based on photographs of 3D ob-
jects, Fig. 2, belonging to �ve classes picked up from real scenes with VHS
TV camera. Analog signals are digitized by a frame grabber PC board and
Imaging Technology 151 processing system. Forty-seven photos are picked
up for every object class [12]. The nonoccluded objects are rotated by ar-
bitrary angles, shifted within the image plane and scaled by camera shift.
The resulting gray level images are thresholded to produce binary silhou-
ettes (see Fig. 3 for an example). A boundary follower algorithm [12] is
used to identify the boundary contours, the elements of which are used for
the feature extraction (see Fig. 4).

Fig. 2. 3D object photos used in the experiments
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Fig. 2. Continue

In this paper, the performance of the Bayesian parametric ("piecewise"
and "pairwise" linear, as well as quadratic classi�er) and nonparametric clas-
si�ers (k � NN "voting" and "volumetric" classi�ers, as well as MLP) are
analyzed. All classi�cation experiments were performed by using a special-
ized interactive PC software package for pattern recognition, PC-PARIS [11].
The performance of the k �NN classi�ers is considered for three values of
the k nearest neighbors: 3, 5, and 9. As for MLP, in all of the experiments
we �xed, on the basis of an extensive preliminary experimental analysis, the
following parameters: lcoef = 0:01, initial weights [w0] = [0:5], and one or
two hidden layers with 10 nodes. As references for the quality analysis of
the applied classi�ers, we have used the corresponding Bayes error estimates
obtained by a very accurate k�NN procedure combining the resubstitution
and leave-one-out methods [6]. The �nal Bayes error estimates are obtained
by averaging the obtained k�NN error estimates for the values of k ranging
from 3 to 43.

In Table 1, the percentual values of the classi�cation errors for the pro-
posed classi�ers obtained in classifying data for both 12-dimensional feature
vectors of the moment invariants and 11�dimensional ones of the Zernike
moment invariants are presented. Based on the results presented in Table 1,
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it can be concluded that best results are obtained by using the MLP with
two hidden layers (MLP(2)) and the moment invariants as feature extraction
method.

Fig. 3. An example of the object silhouette

Fig. 4. Object boundary obtained by using the

original boundary follower algorithm

As for the AR model feature extraction methods, two groups of feature
vectors, obtained by using 1D and 2D AR models, are used. The estimated
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parameters of these models represent the feature vectors for classi�cation.
The number of features is in the range from 1 to 18.

Table 1: Classi�cation errors (in percents) obtained by the
proposed classi�ers: Moments.

Classi�ers Moment Zernike
invariants Moments

Bayes error estimate 1.84 2.38
Linear classi�er (piecewise) 12.77 10.64
Linear classi�er (pairwise) 7.66 8.94

Quadratic classi�er 3.83 3.40

3 5.53 14.47
k �NN voting 5 6.38 16.60

9 8.51 20.00

3 5.53 18.30
k �NN volumetric 5 6.38 25.11

9 6.81 30.64

1 5.11 26.38
MLP hiden layers 2 0.85 21.70

In Table 2, the percentual values of the classi�cation errors obtained
by using both AR models are presented. It can be concluded that the best
results are obtained by using 3 � NN volumetric classi�er and the 2D AR
model of the �rst order. As for AR models with higher orders, the best
classi�cation results are obtained by using the MLP(2) in the case of 2D AR
model of the 8th order. For lower orders of the 2D AR model and for 1D
AR model, we could not obtain the satisfactory results by using the MLP.

Table 2. Classi�cation errors (in percents) obtained by the
proposed classi�ers: 1D and 2D AR model.

Feature numb. - 1D AR model Feature numb. - 2D AR model

Classi�ers 1 2 3 4 5 6 4 6 8 10 12 14 16 18

B. E. 13.7 9.6 33.0 22.1 15.3 6.3 2.8 7.9 12.7 14.4 13.5 9.5 7.6 6.0
L. C. (piec.) 36.2 32.3 35.7 34.9 34.9 25.5 30.6 37.9 29.9 31.9 28.5 24.7 25.5 25.1
L. C. (pair.) 30.2 21.7 34.5 30.2 25.5 12.3 27.7 36.2 23.8 21.7 17.0 17.9 17.0 13.6

Q. C. 26.4 20.0 37.0 28.1 23.4 17.9 39.6 30.6 20.8 13.6 14.9 11.9 7.7 7.7

3 12.8 12.8 28.5 31.5 39.6 42.1 2.1 22.1 22.1 22.1 23.0 19.6 14.5 18.0
k-NN 5 14.0 16.6 36.6 40.0 46.4 48.9 2.5 24.7 23.8 26.0 24.7 20.4 17.4 19.6
vot. 9 21.7 26.8 43.0 45.5 51.9 51.5 5.1 28.5 24.7 27.2 25.5 22.5 14.5 17.0

3 11.5 8.5 29.4 20.0 17.9 17.9 1.3 12.8 16.6 19.6 17.9 14.5 11.9 10.6
k-NN 5 12.3 11.9 33.6 26.4 24.3 25.5 1.7 14.0 21.7 23.0 19.6 17.4 14.5 11.5
vol. 9 13.2 15.3 34.5 29.8 28.5 28.1 3.8 17.4 26.4 25.1 21.7 17.9 14.5 11.5

MLP 1 68.5 58.7 40.4 40.0 37.4 23.0 64.3 64.3 34.5 43.1 23.2 34.5 30.2 5.5
h.l. 2 60.0 61.3 55.7 60.8 43.0 19.2 66.4 66.4 40.4 23.8 15.9 35.3 33.2 1.7
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Based on the entire experimental analysis, it could be concluded that the
most appropriate feature extraction/classi�cation combination for solving
the 2D contour classi�cation example considered in this paper, consists of
the moment invariants and MLP with 2 hidden layers. In this sense, this
combination is recommended for solving 2D contour classi�cation problems
where highly limited training data sets are available.

6. Conclusion

In this paper, the application of statistical parametric and nonparamet-
ric pattern classi�ers to the classi�cation of 2D shapes represented by the
moment invariants and the stochastic AR models is considered. Performance
of the considered classi�ers is analyzed with respect to the corresponding
Bayes error estimates, calculated for the given data set. Based on the en-
tire experimental analysis, the moment invariants, as the feature extraction
method, and the multilayer perceptron with 2 hidden layers, as the pattern
classi�er, are recommended for 2D shape classi�cation problems in highly
limited training data set conditions.
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