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SUBBAND CODING OF IMAGES: NOVEL

APPROACHES AND SOME IMPROVEMENTS

Miodrag Popovi�c and Dragutin �Sevi�c

Abstract. The novel approaches and some computational improvements of
subband coding of images are described in this paper. Special attention is given
to: 2�1{D and nonseparable 2{D wavelet decompositions, computationally im-
proved 2{D ELT and fuzzy postprocessing of subband coded reconstructions.
A common characteristic of presented case studies is that the problem of image
coding is conceptually treated as a two{dimensional one, although separability
is largely exploited for e�ciency purposes. Some experimental results of simula-
tions of subband coding of images using di�erent algorithms are also presented.

1. Introduction

The basic idea of subband coding (SBC) of images is to split up the
frequency band of the signal, and then to code each subband separately using
a coder and bit rate appropriate to that subband [41]. Two main criteria
for allocating bits among the subbands are the energy they carry and the
di�erent sensitivity of the human eye to di�erent spatial frequencies.

A comparative study of various subband coding algorithms could be found
in our earlier paper [25]. In this paper, our intention is to describe some of
the newer approaches and computational improvements in subband coding of
images. Special attention is given to: nonseparable 2{D and 2�1{D wavelet
decompositions, computationally improved 2{D ELT and fuzzy postprocess-
ing of subband coded reconstructions. A common characteristic of presented
case studies is that the problem of image coding is conceptually treated as a
two{dimensional one, although separability is largely exploited for e�ciency
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purposes. Some experimental results for simulations of subband coding of
images using di�erent algorithms are also presented. Our aim was to code
pictures with low bit rates, between 0.2 to 1.0 bits per pixel (bpp) and to
compare objective and subjective results, as well as arithmetic complexity
of algorithms. The test picture "Lena" 512 � 512, with 256 gray levels, is
used for presentation of results. Computer simulations were conducted also
using other pictures, however, no important di�erences in results have been
found, except in the case of the fuzzy postprocessing of reconstructed im-
ages, where experimental results for "Lena", "Peppers" and "Awl" images
are presented.

2. Coding of image subbands using vector quantization

A fundamental result of Shannon's rate{distortion theory is that better
performance can always be achieved by coding vectors instead of scalars, even
if the data source is memoryless. Excellent overviews and tutorials on vector
quantization can be found in [10,9]. To exploit orientation of local image
content, orientation adaptive vector quantization (OAVQ) [32,24,25] is used.
The basic idea of orientation adaptive VQ is to use vectors with varying
shapes, for example: for vector length of 2, we use blocks with following
shapes: 1� 2, 2� 1; for vector length of 4, blocks have shapes: 2� 2, 1� 4
and 4 � 1; and for vector length of 16, blocks have following shapes: 4� 4,
2�8, 8�2, 1�16 and 16�1. The shapes are selected depending on Lagrange
functional. By varying Lagrange multiplier it is possible to constrain coder
with respect to entropy or distortion.

Detailed explanation of lattice and pyramidal lattice vector quantization
algorithms can be found in [4,5,6,8]. LVQ algorithms are in theory subopti-
mal compared to the LBG algorithm [16], however, algorithms for lattice VQ
have much more e�cient computer implementations. The existence of code
table is not necessary condition for the realization of LVQ. Moreover, oper-
ation of coder is not dependent on image contents, so coder is not "trained"
on some speci�c source distribution. Because distortion measures are not
evaluated for determining of codewords, coding process is much faster when
using LVQ compared to the LBG VQ. As a practical consequence of this,
it is possible, by varying scaling parameters, to achieve better results with
LVQ than with LBG, keeping computing time still lower for LVQ.

In [2,1] the statistics of wavelet coe�cient's subimages were modelled by
the generalized Gaussian. Laplacian approximation of Gaussian function
leads to the use of pyramidal lattice vector quantization for all subbands,
except the lowest one. The coding of subbands in our simulations is realized
as follows: the lowest subband is lattice vector quantized [4] usingD2 lattice,
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and the other subbands are coded using pyramidal lattice vector quantization
[8,2], using D2 or D4 lattice. In order to optimize the trade{o� between
minimum distortion and bit rate using a lattice quantizer, the lattice has to
be truncated and scaled. However, instead of scaling the lattice codebook,
it is much better to scale the source vector. We used the encoding algorithm
described in [6].

Our encoding strategy is to de�ne scaling factor in some range, and en-
coding is done successively by gradual increasing of scaling factor. Because
lattice VQ and pyramidal lattice VQ algorithms are computationally very
e�cient, overall timings of lattice and pyramidal lattice VQ are still much
shorter than timings of LBG algorithm for similar performances.

The shapes and the scaling factors of lattice quantization are selected
depending on Lagrange functional. By varying Lagrange multiplier, it is
possible to constrain coder with respect to entropy or distortion. Subbands
are coded in blocks of dimension 32 � 32, so the scaling factor and the
orientation of vectors are determined for each of these blocks.

The strategy of lattice VQ allows realization of automatic bit allocation,
adjustable in a very wide range. Automatic bit allocation among the 32 �
32 blocks is achieved by combination of Lagrange multiplier method and by
varying scaling factors for LVQ. Note that 32 � 32 blocks are smaller than
subbands, so "busy" and "quiet" blocks are also distinguished in subbands.

For each of 32�32 blocks cost is determined and minimized, by varying
scaling factor of LVQ and orientation of vectors:

cost = D + Lm � E (1)

where D is distortion, Lm is Lagrange multiplier, and E is signal entropy.
Distortion and entropy are functions of scaling factor of LVQ and vector
orientation. Large values of Lm constrain coder entropy, and small ones
constrain distortion. Depending on target bit rate, the speci�c value of Lm
is adopted.

3. Image coding using Wavelet transform

For detailed and excellent explanation of image coding using wavelet
transform the reader is referred to [1]. For even more studious reading,
see [38]. Our simulations were performed using all three �lter families given
in [1]. Based on our experimental results, for all types of wavelet decompo-
sitions, the simulations using �lter denoted as no. 2 9-7 were chosen as the
best. For nonseparable DWT, the same �lter pair is extended to 2{D case
using McClellan transformation.
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Various extensions of the 1{D wavelet transform to higher dimensions
exist. Applying two 1{D wavelet transforms separately is the most often used
way to generate 2{D wavelet transform. This produces a multiresolution
scale factor of 2 and privileges horizontal and vertical orientations. Such
a multiresolution analysis provides, at each resolution level, three wavelet
coe�cient sub{images having di�erent orientations and one low{resolution
sub{image. One stage of �lter bank for realization of separable 2{D DWT
is shown in Fig. 1. This, pyramid-structured wavelet decomposition of 2{D
signals, proposed by Mallat [17], was followed by many authors. Pyramid{
structured wavelet representation is schematically presented in Fig. 2.a.

h

g

(2;1)#

(2;1)#

h

g

h

g

(1;2)#

(1;2)#

(1;2)#

(1;2)#

-

-

-

-

Lin

rows

columns

-

-

L11

L12

L21

L22

Figure 1. One stage of �lter bank for realization of separable 2{D DWT.

c11 c12

c21 c22

b12

b22b21

a12

a22a21

c1c1 c2c1 b2c1 a2c1

c1c2 c2c2 b2c2 a2c2

c1b2 c2b2 b2b2 a2b2

c1a2 c2a2 b2a2 a2a2

a) b) c)

Figure 2. Three stages of wavelet decompositions.
a) Pyramid{structured wavelet representation.
b) Tree{structured wavelet representation (uniform decomposition).
c) 2�1{D wavelet representation.
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3.1 Image coding using tree{structured �lter bank

based on wavelet prototype

Another type of wavelet transform, suitable for texture analysis, was pro-
posed in [3]. To overcome limitations of hierarchical transforms (based on
2{band splitting) in image coding applications, we also used full tree struc-
tured wavelet transform ]3], decomposing the image in the same manner as
with the Lapped transforms. An example of this tree{structured wavelet
transform representation is shown in Fig. 2.b. Decomposition is uniform,
because we used full tree structure. We used the same wavelet prototype as
for the 2{band splitting [1]. This kind of decomposition is obviously compu-
tationally less e�cient than decompositions with usual hierarchical wavelet
transform. Moreover, it is also less e�cient than decompositions with lapped
transforms. Therefore, it is included only for the sake of comparison.

3.2 Image coding using discrete Wavelet transform

with direction dependent resolution

The examples of wavelet decompositions, shown in Fig. 2.a. and b., could
be viewed as special cases of a general approach to wavelet decomposition,
known as Wavelet packets (WP) [28]. The common feature of all these algo-
rithms is that the separability is exploited at each stage of decomposition,
so each stage of decomposition includes both row and column transforms.
Because of alternating rows/columns processing, it is not possible to realize
any kind of merging of consecutive stages of 1{D transforms. In [21,26] we
proposed another type of 2{D representation, suboptimal compared to WP,
interesting because of the e�ciency of its realization.

The basic idea of the proposed algorithm is very simple: instead of sepa-
rable rows/columns computation at each stage, all octaves in each dimension
are computed at once, so complete 2{D wavelet transform is implemented
as separable computation of two complete 1{D transforms (actually one re-
peatedly applied on all N rows, and another on all N columns). Because
of that, the new algorithm will be denoted 2�1{D DWT. 2�1{D discrete
wavelet representation is shown in Fig. 2.c. Number of octaves for this ex-
ample is J = 3. The evaluation of complete 1{D DWT is not the only way
to achieve decomposition shown in Fig. 2.c, although it is most e�cient way
to do that. The decomposition shown in Fig. 2.c. can be obtained following
decomposition from Fig. 2.a. with only row (column) decompositions of cer-
tain subbands. Perfect reconstruction property of this type of transform is
not hard to prove. It is easy to see in Fig. 2.c. that horizontal and vertical
resolution for all subbands are not the same. Hence, this scheme enables
more exible bit allocation in image coding applications compared to the
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wavelet representation in Fig. 2.a. For example, most of information about
horizontal and vertical edges is packed in border subbands a2c1 and c1a2.

Because length-N/2, length-N/4, etc., DWT's are applied (only once) to
all rows and columns, the computational complexity of the representation
in the Fig. 2.c. is higher than for the representation in Fig 2.a. However,
merging of successive octaves is easy to implement in this type of analy-
sis/synthesis, so it is possible to use various improvements for computation
of 1{DWT, proposed in [22,37,29]. Merging of successive 1{D octaves is
not possible to achieve for decomposition shown in Fig. 2.a. If decomposi-
tion in Fig. 2.b. is obtained by recursive application of 2{band �lter bank,
decomposition shown in Fig. 2.c. has lower computational complexity.

Compared to the decomposition strategy using wavelet packets [28], the
possibility of di�erent resolutions in di�erent directions is included in the
new algorithm. Furthermore, the new algorithm o�ers simpler (because
it is nonadaptive) realization, so good compromise between simplicity and
performance is achieved. Yet, primarily because for coding of subbands,
in our simulations we used pyramidal lattice vector quantization [2], better
experimental results than in [28] were obtained.

It should be emphasized that the concept of di�erent resolutions in di�er-
ent directions, obtained by only 1{D decomposition of certain subbands (row
decomposition without column decomposition, or vice versa), although so far
not used, could be also implemented in 2{D wavelet packets decomposition.
In this way, wavelet packet tree could be better adapted to the speci�c orien-
tation of image. However, this doesn't necessarily mean the further increase
of the computational complexity. Namely, further decomposition of rows of
a subband could be viewed as a saving on column decomposition.

3.3 Image coding using nonseparable Wavelet transform

In our investigation, we also included the decomposition of image by using
two{dimensional nonseparable Wavelet transform [33]. The subband signals
are subsampled using so{called "quincunx" lattice. This algorithm uses non-
separable and nonoriented �lters. It decomposes the original image with a
multiresolution scale factor of

p
2. One stage of �lter bank for realization of

nonseparable 2{D DWT is shown in Fig. 3. The quincunx lattice is shown
in Fig. 4. Note that the quincunx lattice in wavelet theory is equivalent to
D2 lattice in the information theory.

Our approach is very similar to the realization proposed in [2], with the
main di�erences being: the number of octaves in our realization of discrete
wavelet transform is six (two more than in [2], instead of DPCM we used
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lattice VQ for lowest subband, and �nally, our vector quantization algorithm
is orientation adaptive.
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Figure 3. One stage of �lter bank for realization of nonseparable 2{D DWT.
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Figure 4. Quincunx lattice.

Nonseparable DWT decomposition of "Lena" image using quincunx sub-
sampling is shown in Fig 5. Odd numbered levels of decomposition are,
because of scale factor of

p
2, presented as rotated by 45 degrees.

In order to achieve compact use and access to memory, subbands cor-
responding to odd numbered levels of decomposition are packed with odd
numbered rows shifted. "Packed" subband decomposition is shown in Fig.
6. It should be noted that this method of storing wavelet coe�cients, be-
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cause of di�erent indexing, requires di�erent subroutines for odd and even
numbered levels of decomposition.

Figure 5. Nonseparable DWT decomposition of
"Lena" image using quincunx subsampling.

Figure 6. Nonseparable DWT decomposition of "Lena"
image "packed" for compact use of memory.
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Simulations based on nonseparable DWT were performed using �lters
given in Table II in [2]. Those �lters are derived from �lters no. 2 9-7 [1]
applying the transformation:

cosw ! 1

2
(cos!x + cos!y) (2)

to the 1{D trigonometric polynomials. This transformation ensures that all
properties of the 1{D �lters are satis�ed by the 2{D �lters. Note that 2{D
�lters, derived in this way, are nonoriented, i.e. their �ltering characteristics
are not direction dependent. This is the main distinction between nonsepa-
rable DWT decomposition used in this paper for image coding simulations
and the other separable decompositions presented here.

4. Image coding using 2{D Extended Lapped transforms

The Extended lapped transforms (ELT) [19,20] are generalization of the
MLT with arbitrarily long basis functions. They o�er better subband sepa-
ration than MLT.

For the sake of simplicity and to achieve computational savings, 2{D
transforms are often implemented as separable operators, in two steps: �rst,
all rows in a block are transformed with a 1{D transform, and then all
columns in the transformed block are transformed using the same 1{D trans-
form (or vice versa, result is the same). In [34] we proposed a further com-
putational optimization of 2{D separable extended lapped transform (ELT),
based on fully optimized 1{D ELT, proposed by Malvar [20]. The new fast
algorithms for the ELT are based on the use of FFT algorithm for compu-
tation of the DCT{IV operator, �rstly proposed by Duhamel et al. in [7].
Duhamel's algorithm includes input and output rotations, with buttery
matrices very similar to window buttery matrices of ELT's.

Also, contrary to results presented in [19], results of our numerous image
coding simulations ful�lled the theoretical expectations: we have obtained
improvement in coding results when overlapping factor K of ELT is in-
creased, or when ELT with K > 1 instead of MLT or LOT [18] is used.
However, for coding simulations, instead of 256 � 256 images as in [19], we
used 512 � 512 images. To avoid border e�ects, we have used the periodic
extension of image.
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Figure 7. The structure of the fast implementation of the ELT analysis/synthesis
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Note that the butteries Di's and D0 are di�erent.

4.1 The FFT based implementation of the ELT

The Extended Lapped Transform, �rst proposed in [20], and further ex-
plained in [19], is usually implemented using the DCT{IV transform, al-
though the FFT is used for the e�cient computation of DCT{IV [19]. Our
implementation of ELT is also based on the use of FFT but it is derived in
the following way: using the approach of Duhamel et al. [7], one can sup-
pose that the window has been applied to the signal, and concentrate to the
central part of ELT, the transform itself. Since this transform was named
by Duhamel as the "TDAC transform", the same name will be used in this
paper. Malvar's approach in [20] and [19] was di�erent: he has concentrated
on the e�cient computation of the DCT{IV operator. Since the derivation
of the TDAC transform is the straight repetition of the work performed in
[7] and [31], it will not be presented here.

The implementation of TDAC transform is shown by a owgraph in Fig.
7. It should be emphasized that the output rotation by angle � = 0 uses no
real operations, and the rotation by � = �=4 uses only 2 real multiplications
and 2 real additions. The FFT is optimally implemented using split-radix
algorithm. For the number of bands M � 16, the FFT could be optimally
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implemented with a single stage radix-2, 4, or 8 algorithms, which means
no indexing. Duhamel et al. [7] showed that the TDAC is self{inverse
transform, so there is no need to derive the inverse TDAC transform.

The structures of the ELT analysis �lter bank and the ELT synthesis
�lter bank are shown in Fig. 7. Because of the orthogonality of ELT, the
synthesis �lter bank is the transpose of the analysis �lter bank.

Using the angle values from Table D.3 [19], this �lter bank has the same
frequency response as ELT from [19] or [20] (disregarding some irrelevant
channel multiplications by �1). The angle values �ik can be read directly
from Table D.3 in [19]. However, the values for �0k should be obtained by
following relations:

�0k = �̂0
2k; k = 0; 1; :::;M=4 � 1 (4)

�0k = �=2� �̂0M�2k�1; k =M=4; :::;M=2 � 1 (5)

where �̂0k are the angles from Table D.3 [19]. This permutation is essential to
achieve necessary reordering of elements for TDAC transform. On the other
hand, in programs for ELT proposed by Malvar [19], data unshu�ing steps
were moved outside of recursive modules. In our approach, however, it is
easier to recognize and to use full possibilities of scaling and inverse scaling
of buttery matrices.

4.2 Scaling of buttery matrices

As proposed by Malvar [19], all the coe�cients in the cascade of window
butteries could be scaled, so that diagonal entries would be equal to 1 or �1,
and necessary inverse scaling would be applied to the last buttery in cascade
(D0). Computational complexities of ELT's in Table D.3 [19] correspond to
this way of scaling butteries. However, looking at the Fig. 7, it is easily
perceived that the inverse scaling could be applied to the input rotations of
FFT based DCT{IV realization, for all possible numbers of bands, M . This
�rst step in optimization procedure, saves one multiplication per sample.
If rotations are realized using 3 real multiplications and 3 real additions
(denoted by 3/3), then saving is equal to 0.5 multiplications and 0.5 additions
per sample. It should be noted here that there is a subtle computational
di�erence between the MLT [18], which uses the sine window, and ELT with
overlapping factor K = 1, which uses buttery angles given in [19]. Because
of similar frequency responses, MLT is usually considered equivalent to ELT
with K = 1.

An e�cient MLT implementation was proposed by Duhamel et al. in
[7], and synthesis �lter bank algorithm for this MLT implementation was
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completed by �Sevi�c and Popovi�c [31]. If butteries in MLT are merged,
as proposed by Duhamel et al. [7], this part of MLT algorithm requires 2
multiplications and 3 additions per sample. However, this kind of merging is
not possible for ELT with K = 1, where computational savings are achieved
by scaling and inverse scaling of buttery coe�cients, so this part of ELT
algorithm requires 3 multiplications and 2 additions per sample (if rotations
are realized as 3/3, this part of ELT algorithm requires 2.5 multiplications
and 2.5 additions per sample).

4.3 2{D extension of ELT

The basic structure of the 2{D separable ELT analysis �lter bank, as pro-
posed by Malvar [19], and based on the use of FFT for DCT{IV realization,
is shown in Fig. 8. In the simplest form of implementation, whole rows
or columns are fetched from image matrix, and, after processing with 1{D
ELT's, returned to matrix. Inverse scaling is applied to input rotations. Al-
though row/column calculations are easy to implement using for loops, it is
not easy to correctly represent them in the owgraph.
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Figure 8. The basic structure of the 2{D separable ELT
analysis �lter bank. N �N denotes image matrix,
IR and OR are input and output rotations, respectively.

It is possible to reorder some of row and column computations, which
are independent, without a�ecting the �lter bank output. The reordered
owgraph, shown in Fig. 9 resembles the "true" 2{D implementation. 2{D
input window is computed �rst (row/column), after that 2{D input rotations
(column/row, to save on number of row/column fetchings), after that 2{D
FFT (row/column), and �nally, 2-D output rotations (column/row). To save
on the number of accesses to matrix, it is possible to reorder input window
and input rotations row/column computations, as shown in owgraph in Fig.
10. Implementations shown in Figs. 9 and 10 are equivalent.



M. Popovi�c and D. Sevi�c: Subband coding of images ... 333

FFT

-

-

-

-

`

`

`

`

`

`

IR

-

-

-

-

`

`

`

`

`

`

xM-2k-1

x2k

yM-2k-1

y2k

ORIS

xM-2k-1

x2k

yM-2k-1

y2k

IRIS

�
�
�
��3Q

Q
Q
QQs-

-
ssk;j

-ssk;j

csk;j

csk;j

�
�
�
��3Q

Q
Q
QQs-

-
wcsk;j

wcsk;j

�wssk;j
�wssk;j

ORIS

-

-
-

-
`

`

`

`

`

`

N � N N � N

6 ?

0

M-

-
-

-
`

`

`

`

`

`

M

0

M/2

xM-2k-1

x2k

yM-2k-1

y2k

OR

xM-2k-1

x2k

yM-2k-1

y2k

IR

�
�
�
��3Q

Q
Q
QQs-

-1

�1

csk

csk

�
�
�
��3Q

Q
Q
QQs-

-wctk

wctk

�1

�1

WINDOW

INPUT

DK-1,DK-2,.D0

-

-
-

-
`

`

`

`

`

`

N � N

? 6

M M

00

-

-
-

-
`

`

`

`

`

`

WINDOW

INPUT

DK-1,DK-2,.D0

-

-
-

-
`

`

`

`

`

`

N � N

? 6

M M

00

-

-
-

-
`

`

`

`

`

`

IRIS

-

-
-

-
`

`

`

`

`

`

N � N

? 6

M M

00

-

-
-

-
`

`

`

`

`

`

FFT

-

-
-

-
`

`

`

`

`

`

M/2

OR

-

-
-

-
`

`

`

`

`

`

N � N

? 6

M M

00

-

-
-

-
`

`

`

`

`

`

ROWS COLUMNS ROWS COLUMNS ROWS

Figure 9. The structure from Fig. 8 with reordered rows/columns computation.
The cascade of butteries and delays is substituted by the
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Figure 10. The structure from Fig. 9 with reordered input window and input
rotations rows/columns computation. Butteries are same as in Fig. 9.

Reordering, shown in Figs. 9 and 10, makes possible computational sav-
ings based on scaling of all butteries (left or right from FFT computations),
and inverse scaling of the last one in the cascade, as shown in Figs. 8 and 9.
However, inverse scaling in this last buttery should compensate for scaling
performed both in row and column computations. Inverse scaling in the
same dimension is well explained for the 1{D case [19]. Inverse scaling for
scaling performed in another dimension is easy to accomplish by using the
following rule: if k'th element in row computation is scaled by factor S(k),
then subsequent computations in k'th column are to be inverse scaled by the
factor S(k). Because of that, inverse scaled buttery coe�cients in Figs. 9
and 10 have both row and column indices, k and j. After scaling and inverse
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scaling, row and column calculations before and after FFT computation are
not independent any more, so it is not possible to put scaled operators back
in order of Fig. 8. It should be stressed that the new implementations shown
in Figs. 9 and 10 have the same frequency response as implementation in
[19].

The numbers of operations per sample for the new implementation and
for the implementation based on usual rows/columns computations, using
1{D ELT [19] are given in Table 1. (rotations are counted as 3/3). Number
of operations per sample for 2{D ELT proposed in [19] are determined from
Table 5.1 [19] by multiplying items by 2 (to account for row/column calcu-
lations) and dividing by M , number of input/output elements. LT denotes
the size of look{up table necessary for realization of fast algorithm. For ro-
tations counted as 4/2, the size of look{up table would be about 30% less.
Savings (Mul + Add) per sample are dependent on the number of bands M
and vary between (0.5 + 0.5) for M = 2 and (1.9375 + 1.9375) for M = 32.

The increase of size of the look{up table for buttery coe�cients is the
price to be paid for implementation of the new algorithm. However, mem-
ory requirements for look{up table are still negligible compared to memory
requirements for whole image processing. Namely, memory requirements for
look{up table for original 2{D ELT algorithm [19] are roughly proportional
to M=2. In the new algorithm, memory requirements for scaled butteries
are roughly proportional to M=2, for inverse scaled input rotation butter-
ies proportional to (M=2)2, and for inverse scaled output butteries pro-
portional to (M=4)2, because inverse scaling should account both for row
and column indices. However, in all practical cases, the number of bands M
should be small compared to the number of pixels in a row (or column) of
the image, N .

In the simplest form of implementation, whole rows and columns are
fetched from and retrieved to image matrix. However, looking at Figs. 8
and 9, it is seen that the new algorithm requires more frequent accesses
to image matrix. If realized in this way, the new implementation, with re-
duced number of real operations, and increased number of real data transfers,
wouldn't be much faster compared to the implementation from Fig. 8 on
most computers. To take advantage of reduced computational complexity
of the new implementation, matrix elements should be directly accessed and
processed, using pointers.

Because of orthogonality of the ELT, the synthesis �lter bank is the trans-
pose of the analysis �lter bank, and has the same number of operations as
the analysis �lter bank.
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Table 1. Computational complexity of old [24], and new implementations
of the 2{D ELT. M { number of bands in one dimension, K - overlapping factor,

LT -size of look-up table.

K = 1 K = 2
M Mul/s Add/s LT Mul/s Add/s LT

[19] 2 5.0000 5.0000 4 7.0000 7.0000 5

[19] 4 7.0000 9.0000 8 9.0000 11.0000 10

[19] 8 8.0000 12.0000 18 10.0000 14.0000 22

[19] 16 9.0000 15.0000 44 11.0000 17.0000 52

[19] 32 10.0000 18.0000 90 12.0000 20.0000 106

new 2 4.5000 4.5000 4 6.5000 6.5000 5

new 4 5.5000 7.5000 10 7.5000 9.5000 12

new 8 6.2500 10.2500 40 8.2500 12.2500 44

new 16 7.1250 13.1250 163 9.1250 15.1250 171

new 32 8.0625 16.0625 631 10.0625 18.0625 647

K = 3 K = 4
M Mul/s Add/s LT Mul/s Add/s LT

[19] 2 9.0000 9.0000 6 11.0000 11.0000 7

[19] 4 11.0000 13.0000 12 13.0000 15.0000 14

[19] 8 12.0000 16.0000 26 14.0000 18.0000 30

[19] 16 13.0000 19.0000 60 15.0000 21.0000 68

[19] 32 14.0000 22.0000 122 16.0000 24.0000 138

new 2 8.5000 8.5000 6 10.5000 10.5000 7

new 4 9.5000 11.5000 14 11.5000 13.5000 16

new 8 10.2500 14.2500 48 12.2500 16.2500 52

new 16 11.1250 17.1250 179 13.1250 19.1250 187

new 32 12.0625 20.0625 663 14.0625 22.0625 679

5. Comparisons

The test picture "Lena" 512 � 512, with 256 gray levels, is used for pre-
sentation of results, see Fig. 11.

Computer simulations were conducted also using other pictures, however,
no important di�erences in results have been found.

Nonseparable decompositions are computationally more expensive than
separable ones. Average number of real operations per stage (multiplications
and additions) for the separable 2{D DWT implementation using 1-D DWT
(with 9-7 �lter pair) per pixel isM+A = 2� [(9+7)=2+(8+6)=2] = 16+14.
Multiplying by 2 takes into account row/column calculations. Dividing by
2 averages between 9-tap and 7-tap �lters. For nonseparable DWT, using
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�lter pair derived from 9-7 �lters, average number of real operations per
pixel is M +A = (9 + 7)=2 + (40 + 24)=2 = 8 + 32.

Figure 11. 512 � 512 "Lena" original.

To compare results with the M -band decompositions, results obtained
with 2{D ELT are also included. The length of input block is 2KM , where
M is number of subbands. We used ELT with K = 4 and M = 8. Values
of buttery angles (parameter �k) for window rotations are taken from table
D.3 [19]. This kind of 2{D ELT decomposition of image, realized as proposed
in [34] requires (14+18) mults+adds per pixel.

The objective results of simulations using 2{D separable and nonsepa-
rable DWT and pyramidal lattice VQ are shown in Fig. 12. One of the
reconstructed images, subjectively very similar to the original, is shown in
Fig. 13.

Nonseparable DWT, used with the well developed coding techniques for
separable decompositions, achieves slightly inferior results compared to the
separable decompositions. As predicted in [23,27] M -band �lter banks (2{
D ELT and full tree{structured wavelet decomposition) have advantages
compared to the hierarchical (DWT) transforms. It is interesting to note
that computationally more e�cient 2{D ELT has better results than full
tree{structured wavelet decomposition.
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Only the best results are presented in Fig. 12. Our other results show that
orientation adaptive VQ has small advantages when used with nonoriented
nonseparable DWT, so it seems that nonoriented �lters are more disadvan-
tage than advantage in image coding.

Our results also suggest why the simulations using nonseparable DWT are
so rarely published, or why even the authors having large theoretical con-
tribution to the �eld of the nonseparable wavelet transform [38,13] present
only simulation examples obtained by using modulated �lter banks.

Figure 12. PSNR versus bit rate for simulations using 2{D DWT and ELT.
WAVQ7 denotes quincunx DWT with 7 subbands, WAV10 denotes
separable DWT with 10 subbands, WAVN16 denotes 2�1{D
DWT with 16 subbands, ELT64 denotes 2{D ELT with 64 subbands.
The size of the lowest subband is the same for all decompositions.

It is interesting to compare our results with other results of DWT coders
recently published in literature for the same test image "Lena". For example,
some results for the resolution 512� 512 are:

R = 0:37 bpp, PSNR = 30.85 dB, [1]

R = 0:174 bpp, PSNR = 30.3 dB, [2]

Our simulations also imply that results in [2] are better than in [1] be-
cause in [2] pyramidal lattice VQ instead of LBG VQ is used for coding of
subbands, and not because of nonseparable wavelet decomposition. In these
examples the visual criterions are satis�ed. However, the printed reconstruc-
tions in [2,1] have large white areas on parts where distortions are usually
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present, probably masking them. Our results are slightly better than results
in [2,1] mainly because we used wavelet decompositions with larger number
of octaves, both in separable and nonseparable realizations.

Figure 13. The reconstructed "Lena" image, coded with 0.35 bpp using 2�1{D DWT.

6. A new postprocessing technique based on
fuzzy median �lter

Various modi�cations of the basic median �lter are proposed recently
[39,15,36,30]. Novel postprocessing techniques for block e�ect elimination in
DCT based coding systems are also proposed recently [12,11].

Although all currently used subband coding schemes use perfect recon-
struction �lter banks, the quantization of image subbands results in non{
perfect reconstruction. Very detailed analysis of errors caused by quantiza-
tion e�ects could be found in [40,14].

In [35] we proposed a new postprocessing technique based on fuzzy median
�lter to improve quality of reconstruction of subband coded images. Opera-
tion of proposed median �lter is controlled by fuzzy rules which are adapted
to purpose of elimination of certain types of errors caused by non{perfect
reconstruction of subband coded image.
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We consider the median value of some of the elements (possibly all),
which satisfy certain condition, inside a 7 � 7 square window centered at
the (y; x)th pixel. In order to remove errors caused by non{perfect recon-
struction, the median �lter uses following fuzzy rules:

1) IF (L(y)(x)� L(y + i)(x+ j)) < �, i; j 2 (�3;�2;�1; 1; 2; 3),
THEN c = c+ L(y + i)(x + j), d = d+ 1.

2) IF (L(y)(x)�c=d) > �, THEN Ls(y)(x) = c=d, ELSE Ls(y)(x) = L(y)(x).

where:

L(y)(x) - luminance of the (y; x)th pixel,

Ls(y)(x) - output of the fuzzy median �lter for the (y; x)th pixel,

c - the median value of some of the elements obeying the fuzzy rule 1),

d - counter,

�, � - parameters of the fuzzy median �lter.

For each calculation of Ls(y)(x), c and d are initialized as L(y)(x) and 0,
respectively. Parameter � obviously takes only integer values, while � is not
restricted to integer values.

For best results, parameters � and � should be adapted to image contents.
However, as a rule of thumb, for images with 255 grey levels, very good
results are obtained by choosing � = 15, � = 1. Because the �lter needs not
to be adaptive, its realization is simple and computationally e�cient.

For simulation experiments we used several 512 � 512 pictures with 255
grey levels. The most interesting experimental results, corresponding to
images "Lena", "Peppers" and "Awl", are summarized in [35]. Objective
improvements are the worst for the "Awl", which subjectively needs no post-
processing. Subjective improvements are signi�cant for the other pictures.
Very good results are obtained even with the nonadaptive version of the �l-
ter, so its realization is simple and computationally e�cient. Signal to noise
improvement is, for used test images, between 0.059 and 0.576 dB.

7. Conclusion

In this paper, some novel approaches and improvements in subband cod-
ing of images are presented. A new separable extension of one{dimensional
wavelet transform to two{dimensional case is described. Compared to the
previous proposals, where resolutions for each subband were the same in
horizontal and vertical directions, the new extension is characterized by dif-
ferent resolutions in di�erent directions. Our proposal enables more exible
bit allocation in image coding applications and easy merging of octaves, re-
sulting in improved e�ciency of computation of 2{D wavelet coe�cients.
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The proposed solution can be straightforwardly extended to higher dimen-
sional cases. The wavelet packets concept could be also generalized with
di�erent resolutions for di�erent directions.

A new implementation of the 2{D Extended Lapped Transform is also
described. Compared to the separable solution [19], the new realization of
2{D ELT has reduced arithmetic complexity. Computational savings are
achieved because scaling and inverse scaling of buttery matrices, suggested
by Malvar for 1{D case, are, after some modi�cations of the basic algorithm,
extended to 2{D case. The new implementation has the same frequency
response as Malvar's.

The experimental results obtained by simulations of subband coding of
images using nonseparable and separable DWT algorithms and 2{D ELT's
were presented. The reconstructed images were compared, showing that for
well developed coding algorithms usually used in coding simulations, non-
separable DWT has no advantages. One of immediate directions for further
research is investigation of coding techniques better suited for utilizing in-
disputable advantages of nonseparable decomposition. Another direction of
further research is connected with the fact that better �ltering characteristics
of nonseparable DWT could be utilized for various kinds of image analysis.
Also, supported is the conclusion that for subband image coding M -band
�lter banks are better suited than hierarchical 2{band �lter banks. From
this point of view, the improved algorithm for computation of 2{D ELT is
important contribution to the subband coding of images.

In this paper we also describe a new postprocessing technique based on
fuzzy median �lter to improve quality of reconstruction of subband coded
images. Very good results are obtained even with the nonadaptive version
of the �lter, so its realization is simple and computationally e�cient.
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