
FACTA UNIVERSITATIS (NI�S)
Series: Electronics and Energetics vol. 11, No.3 (1998), 271-284

MATRIX{BASED STOCHASTIC METHOD

FOR THE SPECTRAL CORRELATION

CHARACTERIZATION OF DIGITAL MODULATION

Desimir Vu�ci�c and Milorad Obradovi�c

Abstract. A matrix{based stochastic method for the spectral correlation
evaluation of memoryless digital modulation is presented. The method as-
sumes that the symbol sequence is purely stationary. A new four{state ape-
riodic irreducible Markov chain for O�set QPSK (OQPSK) and MSK signal
representation is introduced and, applying the proposed method, their spectral
correlation evaluation and characterization is performed. Some computed and
graphed results for the spectral correlation characterization of a few types of
digital pulse{modulated and linearly digital{carrier modulated signals based on
the proposed method are given as well.

1. Introduction

The spectral correlation can be exploited for various signal processing
tasks such as synchronization, parameter estimation, detection and classi-
�cation of the modulation type, even when the received signal is buried in
noise and/or time-frequency masked by interfering signals [1,2]. The spec-
tral correlation functions for various types of digitally modulated signals
are derived in [1] by modeling the modulated signals as linear periodically
time-variant transformations (LPTV), either of purely stationary or of cy-
clostationary times{series.

The proposed new matrix-based stochastic method for the spectral cor-
relation characterization of memoryless digital modulation is derived by
generalizing and extending matrix method for computing power spectral
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density proposed by Prabhu and Rowe [3]. The method provides a sim-
ple, straightforward derivation of spectral correlation functions for various
types of memoryless digitally modulated signals using the unique manner
of their Markov chain representation. The spectral correlation functions of
some digital pulse{modulated and linearly digital carrier{modulated signals
are evaluated and their magnitudes are graphed as examples. Besides that,
applying the proposed method on the new simple four{state aperiodic ir-
reducible Markov chain representation of OQPSK and MSK signals, their
spectral correlation functions are derived and spectral correlation features
for their classi�cation are analyzed.

2. Cyclic autocorrelation and spectral correlation

The message contained in the modulated signal is usually a stationary ran-
dom process (discrete time of continuons time) that, after being modulated
by a sinewave carrier, pulse trains, etc., exhibits cyclostationarity corre-
sponding to the underlying periodicity arising from carrier frequency and/or
baud rate. A nonstationary process x(t) that exhibits cyclostationarity at
more than one fundamental frequency (reciprocals of multiple incommensu-
rate periods) is named almost cyclostationary in wide sense if there exists a
cycle frequency � for which the probabilistic cyclic autocorrelation function

R�
XX(�)

�
= lim

T!1
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T
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exist as a function of � and is not identically equal to zero (Ef�g denotes the
expected value) [1,2].

Then probabilistic autocorrelation RXX(t; �) de�ned as

RXX(t; �) = Efx(t+ �

2
)x�(t� �

2
)g (2)

has the Fourier series representation

RXX(t; �) =
X
�

R�
XX(�)e

j2��t (3)

where the sum ranges over all values of � for which (1) is not identically
zero. The Fourier transform of the cyclic autocorrelation (1)

S�XX(f) =
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�j2�f�d� (4)
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is called the spectral correlation. Thus, if the signal x(t) exhibits cyclosta-
tionarity with cycle frequency � in time domain, then it also exhibits the
spectral correlation at shift � in the frequency domain.

World's isomorphism, which guarantees a complete duality between func-
tional theory with time averages and stochastic theory with ensemble aver-
ages, can be generalized for almost cyclostationary processes and implicates
a general theory of cycloergodicity [2]. It should be emphasized that phase
randomization, regardless of the phase probability distribution, destroys cy-
cloergodicity [2] and an appropriate cycloergodic signal model must be used
for studies of second-order periodicity.

3. Digitally modulated signal model

Digital carrier-modulated signal can be represent as

x(t) =Refv(t)ej(2�fct+�0)g
=
1

2
fv(t)ej(2�fct+�o) + v�(t)e�j(2�fct+�0)g

(5)

where fc is carrier frequency, �0 indicates the signal initial phase (assumed
deterministic here to avoid phase randomization) and v(t) is the complex
envelope of x(t). The complex envelope of M-ary memoryless digitally mod-
ulated signals can be expressed as [3]

v(t) =
1X

n=�1

"ng
T (t� nT )

=

1X
n=�1

g(t� nT )"TN

(6)

where ("n) is purely stationary vector-valued sequence which takes values
from the M-dimensional unitbasis vector space (superscript T denotes the
transpose operation). Thus, "n 2 feigMi=1 where ei = [�ij ], i; j = 1; 2; :::;M
(�ij is the Kronecker delta function). The complex envelope can be repre-
sented by homogeneous Markov chain which is completely described by its
state transition probability matrix P = [pij ] = [Prf"n+1 = ej="n = eig],
initial state probabilities fw(0)

i gMi=1 that states feigMi=1 occur at initial time,
and set of signaling waveforms fgi(t)gMi=1 associated with each state in which
the process remains for T seconds. One of signaling waveforms fgi(t)gMi=1 is
being transmitted in each signaling interval T . The set of state waveforms
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can be represented by state vector pulse g(t) = [g1(t); g2(t); : : : ; gM (t)]. The
stationary state probability vector of ("n) is given as

w = [wi] =[Prf"n = eig]
= lim

k!1
w(0)Pk

where w(0) = [w
(0)
i ] and Pk denote the initial state probability vector and

k�step transition probability matrix Pk = [p
(k)
ij ] = [Prf"n+k = ej="n = ei],

respectively. The joint probability matrix of ("n) is de�ned as, Wk =
[wk(i; j)] = [Prf"n = ei; "n+k = ejg], i; j = 1; 2; : : : ;M , and can be com-
puted as Wk =W0P

k, k � 1, where W0 = diag(w) is the diagonal matrix
of state probabilities fwigMi=1, and W�k = WT

k . It can be proven that the
mean and autocorrelation of ("n) are given by m"(k) = Ef"ng = w and
R"(k) = Ef"Tn "n+kg =Wk, respectively.

4. Spectral correlation of
digitally modulated signal

Following the similar procedure as in [3], one can obtain the probabilistic
autocorrelation of the complex envelope (6) of memoryless digitally modu-
lated signal as
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where G(f) is the Fourier transform of g(t), and the spectral density K(f)
of ("n) is the discrete transform of joint probability matrix Wk

K(f) =
1X
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R"(k)e
�j2�kfT

=
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�j2�kfT

(8)

Utilization of eqn. (3) with respect to (7) directly yields the probabilistic
cyclic autocorrelation of the complex envelope v(t)
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and utilization of eqn. (4) yields the spectral correlation of the complex
envelope v(t)

S�V V (f) =

( 1

T
G�(f � �

2 )K(f + �
2 )G

T (f + �
2 ); � = n

T

0; � 6= n
T

(10)

The probabilistic autocorrelation (2) of the digitally modulated signal (5)
can be expressed as

RXX(t; �) =
1

2
Refej2�fc�RV V (t; �)

+ej2�0ej4�fctRV V �(t; �)g
(11)

Then, substituting relations ofRV V (t; �) and similarly calculatedRV V �(t; �)
in (11), and �nally using (3), the cyclic autocorrelation of memoryless digi-
tally modulated signal can be obtained as

R�
XX(�) =

1
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1Z
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[V �(f) + V ��(�f)�]ej2��fdf (12)

where
V �(f) = S�V V (f � fc) + ej2�0S��2fcV V � (f) (13)

in which S�V V (f) is given by (10) an similarly calculated S�V V �(f) has the
form

S�V V �(f) =
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0; � 6= n
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(14)

The Fourier transform of (12) yields the spectral correlation of memoryless
digitally modulated signal

S�XX(f) =
1

4

�
V �(f) + V ��(�f)�� (15)

Thus, the problem of the spectral correlation evaluation of digitally mod-
ulated signals is reduced to calculation of K(f) and G(f). It can be seen
that the expressions for S�V V (f) and S�V V �(f) determine the parts of the
spectral correlation exhibition at cycle frequencies equal to a multiple of
the baud rates � = n=T and associated with the doubled carrier frequency
� = �2fc + n=T , respectively. This separation of the spectral correlation
exhibition enables more convenient cyclic feature analysis compared to other
methods.
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5. Memoryless digital modulation

In this section, the spectral correlation characterization of digital-pulse
modulated signals and a few types of linearly digital-carrier modulated sig-
nals are given,

5.1 Digital pulse modulation

For the real-valued vector pulse g(t) the eqns. (6) and (10) are the general
signal model and the spectral correlation of M-ary digital pulse-modulated
signal, respectively. If symbols transmitted within di�erent signaling inter-
vals are statistically independent, i.e. ("n) is an uncorrelated sequence, then

K(f) =W0 �wTw
h
1� 1

T

1X
k=�1

�(f � k

T
)
i

(16)

Substitution of (16) into (10) yields the explicit formula for the spectral
correlation of digital pulse-modulated signal
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The signaling pulses and their appropriate Fourier transforms for M-ary
digital pulse-amplitude modulation (PAM) are gm(t) = amg(t) and Gm(f) =
amG(f);m = 1; 2: : : : ;M respectively. If am = 2m � 1 � M and wm =
1=M;m = 1; 2; : : : ;M then the second term of (17) cancels to zero and the
spectral correlation for M-ary PAM signal has the form

S�V V (f) =
1

TM
G�(f � �

2
)G(f +

�

2
)

MX
m=1
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T
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where the pulse transform G(f) of a rectangle pulse g(t) of width T is given
by

G(f) = T
sin(�fT )

�fT
(19)
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Thus, M-ary PAM exhibits spectral correlation at frequencies associated
with baud rate � = n=T and it contains no spectral lines (Dirac deltas in
f) for the statistically independent and equally likely transmitted symbols.
The spectral correlation magnitude for binary PAM is showing in Fig. 1.

The signal pulses for M-ary digital pulse-position modulation (PPM) and
pulse- width modulation (PWM) are gm(t) = g(t�tm) and gm(t) = g(t=dm),
m = 1; 2; : : : ;M , respectively. The appropriate signaling pulse transforms
for PPM and PWM are Gm(f) = G(f)e�j2�ftm and Gm(f) = dmG(dmf),
m = 1; 2; : : : ;M; respectively. The parameters tm and dm are allowed time
shifts and allowed time compression factors of nominal zero position or nom-
inal unity width of g(t), respectively. For these digital pulse modulations it
is evident that the second term of (17) does not cancel to zero, generally.
Thus, like PAM, PPM and PWM exhibit spectral correlation at cycle fre-
quencies associated with the baud rate �=n/T, but their spectral correlation
surfaces, unlike PAM contain spectral lines in f. These are the basic recogniz-
able spectral correlation features for these digital pulse-modulated signals.
The spectral correlation magnitude for binary PPM is shown in Fig.2. as an
example.

Figure 1. Spectral correlation magnitude for binary PAM.
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Figure 2. Spectral correlation magnitude for binary PPM
with pulse width=T=2 and pulse positions=0; T=2.

5.2 Digital carrier modulation

The signaling pulses for M-ary amplitude-shift keyed (ASK) and phase-
shift keyed (PSK) signals have the form gm(t) = cmg(t), m = 1; 2; : : : ;M ,
where cm = 2m�1�M for M-ary ASK and cm = ej�(2m�1�M)=M for M-ary
PSK. g(t) is rectangle pulse of width T . If ("n) is an uncorrelated sequence,
thenK(f) is given by (16) and the spectral correlation is given by the general
form (15). If wm = 1=M , m = 1; 2; : : : ;M , additionally, then S�V V (f) and
S�V V �(f) taken the following forms
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where G(f)is given by (19).

For the M�ary ASKPM
m=1 c

�

mcm =
PM

m=1 c
2
m =M(M2�1)=3 6= 0, so it

exhibits spectral correlation at both the cycle frequencies equal to a multiple
of the baud rates � = n=T and associated with the doubled carrier frequency

� = �2f0 + n=T . However, for the M�ary PSK
PM

m=1 c
�

mcm = M and the

sum
PM

m=1 c
2
m =

PM
m=1 e

j(2m�1�M)=M di�ers from zero only for M = 2.
Therefore, only a binary PSK (BPSK) exhibits spectral correlation at both
� = n=T and � = �2fc + n=T . On the other hand, MPSK signals for
M � 4(QPSK signal, for example)does not exhibit spectral correlation at
frequencies associated with the doubled carrier frequency � = �2fc + n=T ,
but only at � = n=T instead. The characteristic of the proposed method to
separate spectral correlation exhibition at cycle frequencies associated with
baud rate and doubled carrier frequency enables this simple and obvious
cyclic feature analysis of ASK and PSK signals.

The spectral correlation magnitudes for BPSK (also binary ASK) and
QPSK are shown in Fig.3 and Fig.4, respectively.

Figure 3. Spectral correlation magnitude for BPSK
(and binary ASK) with fc = 2:25=T .
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Figure 4. Spectral correlation magnitude for QPSK with fc = 2:25=T .

6. MSK and OQPSK signals

MSK and OQPSK signals can be described in quadrature, or equivalent
complex form as

x(t) =vc(t) cos(2�fct+ �0)� vs(t) sin(2�fct+ �0)

=Re
�
v(t)ej(2�fct+�0)

	 (22)

where v(t) = vc(t) + jvs(t) is the complex envelope of x(t). The quadrature
component vs(t) is delayed by half the symbol interval (T/2) with respect
to the in-phase component vc(t).

The complex envelope of MSK and OQPSK signals, given in the matrix
form (6), can be represented by a new four-state aperiodic irreducibleMarkov
chain which is completely described by its state transition probability matrix

P, initial state probabilities fw(0)
i g4i=1, and the set of complex signaling

waveforms fgi(t)g4i=1.
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It can be shown that the state vector pulse g(t) has the form

g(t) =
�
g(t); g�(t);�g�(t);�g(t)�;

g(t) = q(t) + jq(t�T

2
)

(23)

where the symbol weighting for OQPSK is the standard unit pulse q(t) =

uT (t) of duration T and a halfcycle sinusoidal pulse q(t)=
p
2 cos(�t=T )uT (t)

for MSK. The appropriate state transition probability matrix P and the
initial state probability vector w(0), for the statistically independent and
equally likely digital symbols, are given by

P =
1

4
[14];

w(0) =
1

4
[1; 1; 1; 1]

(24)

where 14 denotes 4 � 4-dimensional matrix having all elements equal to
unity. This representation is far simpler then eight-state periodic Markov
chain representation given in [4].

In the case of statistically independent symbols transmitted within di�er-
ent signaling intervals, K(f) is given by (16). The Fourier transform G(f)
of the state vector pulse g(t), given by (23), has the form

G(f) =
�
G(f); G�(�f);�G�(�f);�G(f)�;

G(f) =
�
1 + ej

�

2
(1�2fT )

�
Q(f)

(25)

where the weighting pulse transform Q(f) for OQPSK signal is given by (19)
and for MSK signal is

Q(f) =
2
p
2T

�

cos(�fT )

1� 4f2T 2
(26)

The parts of the spectral correlation originating from the second term of
K(f) (16) cancel to zero due to the matrix wTw structure and the vector
pulse transform G(f) (25) structure. This, only the �rst term of K(f)
is relevant for the spectral correlation evaluation. Substituting (16) and
(25) into (10) and (14), and performing suitable transformations, we obtain
expression for S�V V (f) and S�V V �(f)

S�V V (f) =
1 + e�j��T

T
Q(f +
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)Q�(f � �
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n
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and

S�V V �(f) =
1� e�j��T

T
Q(f +

�

2
)Q�(f � �

2
); � =

n

T
(28)

Thus, OQPSK and MSK signals exhibit spectral correlation at cycle frequen-
cies associated with the baud rate � = n=T for only even integers n (eqn.
(27)), and associated with the doubled carrier frequency � = �2fc+n=T for
only odd integers n (eqn. (28). By substituting the above results into eqn.
(13) and then it into eqn. (15), we �nally obtain the spectral correlation for
OQPSK and MSK signals
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8>>>>>>><
>>>>>>>:
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1
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h
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�
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2 )

+e�j2�0Q(f + fc +
�
2 )Q

�(f � fc � �
2 )
i
; � = �2fc+ n

T ; n odd

(29)
where Q(f) for OQPSK and MSK signals are given by (19) and (26), re-
spectively.

The use of the simple signal model makes this method e�ective for the
spectral correlation evaluation of OQPSK and MSK signals, and for their
power spectrum evaluation (� = 0), too. The same equations can be used
for spectral correlation evaluation of other classes of o�set quadrature dig-
ital modulation by choosing an appropriate weighting pulse q(t). Similar
�nal expressions for spectral correlation of OQPSK and MSK signals where
previously derived, by other means, in [1,2]. As the result of the simplicity
of the introduced new Markov chain representation of OQPSK and MSK
signals and its suitability to proposed method, the presented spectral corre-
lation evaluation and cyclic feature analysis are simpler and more e�ective
compared to other methods.

The spectral correlation magnitudes for OQPSK and MSK signals are
shown in Fig. 5 and Fig. 6, respectively. One can observe that although
OQPSK and MSK signals exhibit spectral correlation at the same cycle fre-
quencies, the cyclic features at � = �2fc�1=T in MSK signal are especially
large compared to those in OQPSK signal.
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Figure 5. Spectral correlation magnitude for OQPSK with fc = 2:3=T .

Figure 6. Spectral correlation magnitude for MSK with fc = 2:3=T .
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7. Conclusion

A new matrix-based stochastic method for the spectral correlation eval-
uation and the corresponding characterization of memoryless digital mod-
ulations is presented. Using the proposed method, the spectral correlation
functions, as new characteristic features of modulated signals, are evaluated
for a variety of digital modulation types. Their spectral correlation magni-
tudes are graphed and the presence of recognizable features in the spectral
correlation transformed space is analyzed. Besides, a new four{state aperi-
odic irreducible Markov chain for OQPSK and MSK signal representation
is introduced and, applying the proposed method, their spectral correlation
characterization is performed. The obtained �nal results are similar to those
derived, by other means, in [1,2]. The presented matrix{based stochastic
method is suitable for the computational analysis of the spectral correlation
features of memoryless digital modulations. The proposed method provides
unique, straightforward spectral correlation evaluation for all types of mem-
oryless digital modulations. The cyclic feature analysis is simpler in most
cases compared to other method.
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