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NONLINEAR TRANSFORMATION OF

ONE{DIMENSIONAL CONSTELLATION POINTS

IN ORDER TO ERROR PROBABILITY DECREASING

Zoran Peri�c

Abstract. This paper presents the original gradient method for the deter-
mination of the optimal signal constellation points disposition after quantiza-
tion, when the error probability is minimized under the power constraint. This
method consists of the nonlinear transformation and rescaling. The method
di�ers from the method presented in [1], which can be used for uniform constel-
lations with great numbers of points (where the continual approximation can be
applied), since it can be applied for generating the nonequiprobable nonuniform
constellations containing any number of points.

1. Introduction

The paper[1]is concerned with the performance of nonlinear encoding in
a Gaussian noise environment (where the equiprobable constellation points
are discussed ).It is interesting to compare scaling gain with shaping gain
obtained by nonequiprobable signaling on the Gaussian channel. One cost
of shaping gain is constellation expansion. The optimal nonlinear encoder
is not the one that results in Gaussian distribution at the channel input.
One similarity with shaping is that the warped and rescaled constellation
(nonlinear transformation constellation) has been expanded. In [1], the op-
timal nonlinear transformation (warping transformation) is done using the
continuous approximation for representing a signal constellation.

The input distribution that achieves the capacity of the Additive White
Gaussian Noise (AWGN) channels with an average power constraint is also
Gaussian. This paper considers the performance of nonequiprobable nonuni-
form one{dimensional signal constellations, obtained by shaping and nonlin-
ear transformation when used on the Gaussian channel. In the �rst part of
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this paper we have considered shaping gain for two interesting quantization
procedures of the Gaussian source. The Gaussian source is quantized apply-
ing the method given in [3] (the �rst method), which gives the equiprobable
appearance of signal constellation points. After that, the same source is
quantized using the Lloyd-Max's iterative quantization method [4] (the sec-
ond method). In the second more important part of the paper a new gradient
method for determining the conditional minimum of the average error proba-
bility per symbol under the average power constraint is presented (nonlinear
transformation constellation points). Using this method, it is possible to
determine the optimal arrangement of constellation points, under the av-
erage power constraint, for transmission over the Gaussian channel. This
signal constellation transformation method is independent of the quantiza-
tion method and information source, and adapts the given source signal
constellation to the transmission channel.

2. Shaping gain determination for di�erent
quantization method

The saving in average power over equiprobable transmission using a one{
dimensional constellation is referred to as the shaping gain. The maximal
shaping gain is achieved when the Gaussian source is applied. In this section,
a Gaussian source quantization, using two di�erent methods of nonlinear
quantization, is performed. The analysis is done on the basis of the shap-
ing gain. The Gaussian source is quantized applying the method given in
[3], which gives the equiprobable appearance of signal constellation points.
After that, the same source is quantized using the Lloyd{Max's iterative
quantization method. The numerical analysis is done for the sixteen points
of a one{dimensional signal constellation.

Using the �rst method (I), the decision levels (rk) and reconstruction
levels (mk) are determined by:
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where L is a number of levels and P is an average power.
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The second method (II) is Max's iterative quantization which leads to rk
and mk given by [4]:

rk;opt =
1

2
(mk;opt+mk�1;opt); k = 2; 3; : : : ; L; r1;opt = �1; rL+1;opt =1;

(3)

mk;opt =

rk+1;optR
rk;opt

rpr(r)dr

rk+1;optR
rk;opt

pr(r)dr

; k = 1; 2; : : : ; L (4)

where pr(r) is a probability density function of the source.

The shaping gain (GS) is de�ned as di�erence between SNR (signal to
noise ratio) for nonuniform constellation (SNRn), and SNR for uniform
constellation (SNRu) (similarly as in [5]), when the error probabilities (Pe)
are equal and the bit rates are almost equal:

GS(Pe) = SNRu(Pe)� SNRn(Pe) (5)

The shaping gains for the previous two quantization methods are shown in
Fig. 1.

Figure 1. Shaping gain (GS) for two di�erent quantization methods.
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The shaping gain depends very much on the quantization method choice.
From Fig. 1. it is evident that the �rst method has the negative shaping
gain value in the wide range of the error probability, so in this case it is
better to use the equiprobable transmission with uniform constellation. In
the next section we will show how to compensate the negative shaping gain
using the appropriate choice of nonlinear transformation and rescaling.

3. Algorithm for determination of optimal signal
constellation points disposition

The problem of minimizing the average error probability (Pe) under the
average power constraint is the nonlinear programming task where the goal
function is Pe and constraint is P (average power). The average error prob-
ability and power of one{dimensional signal constellation can be calculated
as

Pe = 2

LX
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(6)

where �2n is an average noise power, mj is the j{th representation level, L is
a number of levels

Pj =

rj+1Z
rj

pr(r)dr;

pr(r) is a probability density function of the Gaussian source, and rk are the
decision levels. yjl and yjr are de�ned in the following way (see Fig. 2.)
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yLr = +1:

In our case the variables in the goal function are mutual dependent, so
the solution in closed form using the Lagrange multiplicator method is im-
possible.The problem is in fact convex programming problem [2], in which
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Pe is a convex function and inequality constraint is a convex function (the
constraints form a convex set).

Using the gradient method it is necessary to begin from the starting point

M0(m
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(0)
2 ; : : : ;m

(0)
L ) and to go towards the optimumMi in each iterative

step. The next value of mk is determined by m
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(i)
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(i)
k represent the k{th representation point at the i+ 1{th and

i{th iterative step, respectively. �
(i)
k is the weight coe�cient, and h(i) is a

step.

Figure 2. One{dimensional signal constellation and a decision region example.

The algorithm for determination of nonequiprobable nonuniform constel-
lation points disposition is as follows:

0) step: The initialization. The point disposition obtained by described
quantization methods application is used as the starting values.

1) step: The average error probability gradient rPe determination

@Pe
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where �k = yk�1;r + ykl.

2) step: Increasing i.e. decreasing distance between two neighbouring
points (�k) implies shifting the k{th point to L{th point for some small
value �h1 in order to keep the relation among remaining points constant
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3) step: The calculation of the changed power values due to �k value
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variation
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4) step: The coe�cients �
(i)
k (k = 1; 2; : : : ; L) are chosen so that the

distances among the constellation points decrease i.e. increase, propor-
tionally to the speed of error probability changing and the power changing
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5) step: The calculation of new signal point position valuem
(i+1)
k = m

(i)
k +

�
(i)
k h(i), where h(i) is monotonously decreasing function of the ordinal
number iterative step.

6) step: The determination of scaling constant, and based of this m
(i+1)
k

rescaling value

�P (i+1)
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7) step: If condition

max j�(i)k � h(i)j � ";

where " is required to be accurate, is satis�ed the procedure is �nished or
if this condition is not satis�ed rescaled values are set as the new signal

points position values m
(i)
k = m

(i+1)
k rescal; k = 1; 2; : : : ; L and step 1) is

applied.

The nonlinear transformation gain is de�ned as a di�erence between SNR
before (SNRbefore) and SNR after (SNRafter) the nonlinear transforma-
tion (G) of the signal constellation, when the error probabilities (Pe) are
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equal
G(Pe) = SNRbefore(Pe)� SNRafter(Pe)

= 10 log
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(7)

where Gscaling=10 log(Pav=Pav opt) is a scaling gain and Gn=10 log(�
2
opt=�

2)
is a gain due to the nonlinear transformation, which corresponds to the
de�nition given in [1] (G = Gscaling +Gn).

The error probability decreasing obtained by using the proposed method,
for the �rst quantization method, is illustrated in Fig. 3.

Figure 3. Error probability per symbol before and after nonlinear

transformation and rescaling for the �rst quantization method.

The gain obtained by the nonlinear transformation and rescaling of the
signal constellation points initially generated by the �rst and the second
quantization method of the Gaussian source are shown in Fig. 4. The
signal constellation design is done separately for each SNR value, and the
constellation having the maximal gain is obtained.

The aim of paper [1] is the analysis of nonlinear transformation named
warping transformation of the uniform constellation for equiprobable trans-
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mission where the solution is obtained using the continual approximation.
An increase in nonlinear transformation gain with a decrease of SNR for
equiprobable constellations may be observed as in [1]. On the contrary, with
nonequiprobable nonuniform constellations, the gain decreases with SNR de-
creasing. The total gain is equal to the sum of the shaping gain and gain
caused by the nonlinear transformation and rescaling.

Figure 4. Gain (G) after nonlinear transformation and rescaling.

4. Conclusion

The original gradient method for generating optimal signal constellations
minimizes the error probability under the power constraint.The method con-
sists of the nonlinear transformation and rescaling. This signal constellation
transformation method is independent of the quantization method and in-
formation source, and adapts the given source signal constellation to the
transmission channel. Also, we presented a procedure for accurate calcula-
tion of shaping gain for any signal constellation.
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