
FACTA UNIVERSITATIS (NI�S)
Series: Electronics and Energetics vol. 11, No.3(1998), 1-8

SEMIAUTOMATED IMPLEMENTATION OF

ANALOGOUS FUZZY SYSTEMS

Silvio Triebel, J. Kelber and Gerd Scarbata

Abstract. A tool set for the semiautomated design of analog fuzzy hardware
for on{chip implementation is presented here. Based on the description of the
desired behaviour, established for example by a commercial development tool
and available in a standard format (FPL), this tools are able to generate all
necessary data to describe a hardware cell providing the speci�ed behaviour.
Here analogous circuits espeacially in CMOS are considered.

1. Fuzzy hardware

One of the most actual problems regarding the realization of technical
systems is the speci�cation and implementation of non{linear functionality.
Here the fuzzy methodology is an interesting solution. It allows to describe
problems in terms of human{like language constructs and is able to ap-
proximate non{linear functions with only little restrictions. Furthermore, it
supplies a methodology to transform such constructs into formal expressions
which can be implemented by well{known systems, e.g. standard software.

Today such fuzzy systems are mainly designed using one of the fuzzy
development tools available on the market. Mostly these tools are easy to
use and o�er di�erent speci�cation and simulation capabilities. Using such
tools the speci�ed behaviour of a developed system is expressed in terms of
well{de�ned language constructs.

Starting from a behavioural description di�erent ways are possible to
implement a fuzzy controller:

Manuscript received September 1, 1998.
The authors are with Technical University Ilmenau, Faculty of Electrical Engineering

and Information Technology, Department of Microelectronic Circuits and Systems, PO
Box 10 05 65, D-98684 Ilmenau, Germany, E-mail: silvio@inf-technik.tu-ilmenau.de.

1

2 Facta Universitatis ser.: Elect. and Energ. vol. 11, No.1 (1998)

(1) software on standard computers,

(2) programmable fuzzy chips and

(3) dedicated fuzzy hardware.

The common way is to implement the fuzzy system on a standard com-
puter using programming languages like "C". Furthermore, there are some
special fuzzy chips available which can be adapted to the given problem by
programming internal memory [2,5]. The disadvantage of solution (1) is that
it runs slowly in comparison to (2) and (3). Solution (2) normally comes
with a relatively large overhead because such chips are designed to meet
most of the possible requirements.

In some cases it can be attractive to have a dedicated hardware for a fuzzy
system designed for a special application. For example, such a solution is
interesting in the case of:

1. hard timing restrictions: optimization possibilities for systems with
�xed hardware are very limited

2. mobile applications: decrease of power consumption due to the absence
of programming overhead

3. high production volume: decrease of chip area

A possible application of dedicated analogous fuzzy hardware can be found
in on{chip embedded systems. Such systems normally consist of a processor
core running some software and additional components. Interfaces to sensors
and actors are an important part. To prevent these components from dis-
truction, normal operation is to be distinguished from malfunction in a very
short time. Analyzing this problem, non-linear functions occur which can be
modelled by fuzzy formalisms. A software solution for the implementation
will normally be much too slow. One possible solution is the inclusion of
anlogous fuzzy hardware inside the interfaces themselves.

The design process for an embedded system including fuzzy hardware is
illustrated in Fig. 2. The problem, of course, is the dedicated design and
production of the hardware which leads to relatively high design costs. To
minimize these amounts and to possibly consider more than one potential
solution during the design phase, the generation of the hardware{speci�c
design data should be done automatically. For this task the concept of a
module generator, known from other applications (e.g. RAM, PLA), seems
to be a useful solution strategy. Based on a speci�ed behaviour it should be
able to generate all necessary implementation data.

S. Triebel et al: Semiautomated implementation of analogous ... 3

����������
����������
����������

����������
����������
����������

Processor Core

RAM

Analog Interface

dig.

Func-

tions

ld a, 10ff
inc b
call proc1
mv a, c
...

...

Inside the Analog Interface

Required Non-Linearity

Figure 1. Example of an on{chip embedded system.

System Specification

Analog
PartPart

Digital

Function
Linear

Fuzzy-Representation
(Behavioral Description)

System Integration

"Fuzzy-Cell"

Hardware
Implementation

Function
Non-Linear

Figure 2. Design process for systems with fuzzy hardware.

4 Facta Universitatis ser.: Elect. and Energ. vol. 11, No.1 (1998)

The generation result is a cell in a given chip technology, but not only a
netlist of gates and transistors. This set of data can be used as an input to
common chip CAD{systems for further processing (e.g. design rules check,
post layout simulation) or to include it in more complex chips. This paper
deals with a module generator for analogous fuzzy hardware, developed at
our institute. These investigations are based on the following fundamentals:

� fuzzy Values are represented by electrical currents
� restriction to standard CMOS technologies
� generation of compact and regular layouts
� strictly hierarchical implementation of the generator
� implementation of the software in C++

2. Basic design ow

The basic design ow is divided into two steps comparable to the common
design process of other systems, for example digital hardware (see Fig. 3.
and 5.). After a description of the problem by means of fuzzy formalisms,
which is not the subject of our work, the �rst step of the hardware im-
plementation is a structural interpretation of the speci�ed behaviour. This
is done by a simple assignment of a component to a particular function.
For example a dedicated multi-input MAX-operator is provided for each re-
quired MAX-function. Instead of this procedure a real synthesis approach
will be discussed in the future but is not included in this paper. The result of
the structural interpretation is a netlist of fuzzy components denoted in an
ADL-�le1. Each component must have a representation in the library of the
module generator tool set. Additionally the designer can specify toplogical
constraints to control the layout generaion process.

The ADL-format is a language for the description of functional units. It
has been developed at our institute and can include component instantia-
tion, connectivity description and geometrical (topological) information, for
example. The language is similar to "C" and contains only a few dedicated
constructs. So it is very easy to understand.

In Fig. 4 an example of an ADL{�le together with the resulting layout
is shown. The whole cell consists of four parts which are stacked vertically.
This is described by the "abutment over"{expression. At the bottom there
are two linguistic variables with �ve trapezium fuzzy sets each. In the upper
part, the rule base and the defuzzi�cation circuit is located. The internal
structure of the four components is described in separate �les which are
included in the overall ADL{�le of Fig. 4.

1Abutment-oriented Layout Description Language

S. Triebel et al: Semiautomated implementation of analogous ... 5

Designer

Synthesis

Specification, Behavioral Simulation

Fuzzy Development Tool

Interpretation
Structural

Behavioral Description

ADL-File
(Netlist, Topology)

prog. Fuzzy Chip

Software

Topological
Informations

Non-Linear Function

Figure 3. Step 1: Derivation of a structural description.

include "defuzzy.adl"
include "rulebase002.adl"
include "lingvar.adl"

controller()
 {
 terminal EK : RIGHT, INPUT;
 terminal DEK : RIGHT, INPUT;
 terminal UK : RIGHT, OUTPUT;
 terminal U1 : RIGHT, INPUT;
 terminal U5 : RIGHT, INPUT;

 abutment over;

 orientation RB MY;

 i = 1;
 while (i<=5) {
 connect RB.uk[i] UK.i[i];
 connect RB.ek[i] EK.out[i];
 connect RB.dek[i] DEK.out[i];
 i = i + 1;
 }

 connect EK.in EK;
 connect DEK.in DEK;
 connect UK.v1 U1;
 connect UK.v5 U5;
 connect UK.out UK;

 connect *.vdd vdd LEFT;
 connect *.gnd gnd LEFT;
 netattrib width gnd 3*size("Metal2");
 netattrib width vdd 3*size("Metal2");
 }

 call RuleBase002 RB ();
 call COG UK (0 0.17 0.5 0.83 1);

 call LingVar DEK (0 0.375 0.375 0.44

 call LingVar EK (0 0.25 0.25 0.5 0.5
 0.56 0.625 0.625 1 prec=1);

 0.75 0.75 1 prec=1);

Figure 4. Example of an ADL{�le and the resulting layout.

6 Facta Universitatis ser.: Elect. and Energ. vol. 11, No.1 (1998)

Figure 4. continue

The ADL-descriptions are the input to the second step of the design ow.
Here mainly the physical layout and the corresponding transistor netlist are
generated (Fig. 5).

3. Layout generation

During the layout generation a placement is executed �rst (Fig. 5). This is
done by simulated annealing. The designer can de�ne topological constraints
explicitly. This is strongly recommended because the cost function of the
annealing algorithm does actually not take all necessary information into
account.

After the placement the generation of the physical layout is executed.
The �nal sizes of the leaf cells are calculated by iterative calls of the built{in
generators which come with some useful functions to support this process.

S. Triebel et al: Semiautomated implementation of analogous ... 7

To generate the layout of the complete cell three strategies are used. The
�rst is a pure abutment of subcells. It is applied to the regular parts of the
circuit. The characteristic property of these parts is the possibility to divide
them into some similar or identical components realized by subcells. In this
case some restrictions have to be applied to the layout of the subcells. For
example, the terminal positions have to be �xed. The advantages are the
absence of an explicit routing between the subcells and a layout with nearly
optimal area consumption. Examples for abutment layout are current mir-
rors for membership functions and multi{input MIN/MAX operators (Fig.
6).

System
Simulation

Chip
Integration

Generators
Built-in

Predefined
Components

ADL-File

Desired System

ADL-File

Netlist Layout

Generator Calls,
Routing

Placement
Module Generator

Dedicated Cell
Description

Chip
Development
Framework

Figure 5. step 2: layout generation.

The second layout strategy is a slicing layout, known from previous work
at di�erent institutions. This strategy is very suitable for analog layouts.
It allows di�erent components to be considered. Nevertheless matching and
other constraints can be taken into account. In this strategy routing channels
are introduced between the subcells. Third total irregular layouts can be
included but must be designed by hand.

8 Facta Universitatis ser.: Elect. and Energ. vol. 11, No.1 (1998)

Iout

vdd

Iout

Iout = max(I(A), I(B), min(I(C), I(D)))

I(B)I(A) I(C) I(D)

Figure 6. schematic and layout of a multi{input MIN/MAX-operator.

The focus of our work was on the development of the generator library
and the analog router. The generator library consists of two parts: built{in
generators and ADL-macros. The built{in generators are written in C++
using an own library called "WOOD". Actually the library include the
following parts:

� MIN- and MAX- gates
� combined MIN/MAX- gates (Fig. 6)
� cascaded current mirror in- and outputs
� several transistors,
� di�erential transistor pairs,
� resistors and
� capacitors.

S. Triebel et al: Semiautomated implementation of analogous ... 9

For the implementation of the bulit{in generators a quasi{symbolic lay-
out description was used to abstract from the large amount of data occuring
due to the consideration of polygons and to become more technology inde-
pendent. A special class library with transistors and other relevant objects
was created. All objects provide methods for absolute and relative place-
ment, compaction and abutment. The creation of the layout is based on a
generic technology to which the used production technology must be bound.
Among other things, comparable methods were already published in [4]. Fig.
7 shows the layout generation of a current mirror input, for example.

1) con1=npluscon(0,18)

1)

2)

3)
4)5)

2) T1=nmos(18,7)
3) T1−>attach(DRAIN|LL,con1,RL)

4) con2=con1−>clone()
5) con2−>attach(LL,T1,SOURCE|RL)

6) con3=polycon()

7) con3−>attach(LL,T1|GATE,LU)

6)

9)

8) beginpath(RL,con2,RU)

9) pathYX(LEFT,con3,RIGHT)

Figure 7. example for the quasi{symbolic layout description.

The generators o�er a couple of useful properties. So a fast algorithm
for the calculation of the sizing parameters of each cell in a slicing oorplan
was implemented. Furthermore, the generators distinguish virtual from real
interface terminals. For global routing all possible terminal positions are
available. The global router decides, which terminals are really to be gen-
erated. So the optimization space is not restricted additionally and the
existence of unused wires inside the reusable modules will be avoided.

The implemented channel router is based on the results in [1]. This ap-
proach provides the possibility of di�erent wire width and distances. The
channel boundaries can be irregular. The algorithms were improved to

10 Facta Universitatis ser.: Elect. and Energ. vol. 11, No.1 (1998)

handle terminals in di�erent layers and to allow the description of "wire{
clusters" for example pairs of wires with symmetrical geometry (Fig. 8) or
bundles of wires which could be kept together to provide common shielding
structures.

Figure 8. Example of a channel.

For example, the generated layout of a fuzzy controller is shown in Fig.
9. It was implemented in a 2.4�m CMOS technology (MIETEC). The core
size of the implemented chip is about 1:5mm

2.

Figure 9. Layout of a fuzzy controller chip.

S. Triebel et al: Semiautomated implementation of analogous ... 11

4. Conclusions

Discussed here was a realization of a module generator to design analogous
hardware for fuzzy{controller automatically. Such a generator seems to make
a good link between the world of fuzzy development tools on one side and
chip development systems on the other side. Of course there are many
problems left to be solved. Examples are the possible implementation of a
true synthesis process and the development of additional interface modules
to overcome the restriction of the application of only currents to represent
the interesting values.

Acknowledgement

The authors would like to thank the "Deutsche Forschungsgemeinschaft"
supporting this work within the "Sonderforschungsbereich 358".

REFERENCES

1. R.S. Gyurcsik, J.-C. Jeen: A generalized approach to routing mixed analog and

digital signal nets in a channel. IEEE J. Solid{State Circuits 24 (2): 436{442,
April 1989.

2. H. Eichfeld, T. K�unemund, M. Menke: Architecture of a General{Purpose 12

Bit Fuzzy Coprocessor. Proc. 3. EUFIT, Aachen, Sept. 1995, pp. 1815{1819.

3. J. Kelber, S. Triebel, G. Scarbata: Automatic Generation of Analogous Fuzzy

Controller Hardware Using a Module Generator Concept. Proc. 2. EUFIT,
Aachen, Sept. 1994, pp. 1562{1569.

4. B.R. Owen, R. Duncan, S. Jantzi: Balistic: An Analog Layout Language. IEEE
Custom Integrated Circuits Conference, 1995, pp 3.5.1{3.5.4.

5. H. Watanabe, W. Dettloff, K. Yount: A VLSI fuzzy logic controller with

recon�gurable, cascadable architecture. IEEE journal of solid{state circuits, Vol.
25, April 1990, 2, pp. 376.

