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SOME RESULTS ON BINARY DECOMPOSABLE

CODES OVER N�M{PSK CONSTELLATIONS

Stefano Calabr�o, Matteo Campanella and Giovanni Garbo

Abstract. The structure of the encoder and the decoder for binary decom-
posable codes over N �M{PSK constellations is described. The performance
of some codes over the AWGN channel is investigated by means of bounds and
simulations. The e�ect of a di�erential encoding and a multistage decoding
algorithm is studied.

1. Introduction

An N � M{PSK constellation is completely symmetrical and its most
natural simply transitive group of isometries is (ZM )N . An important class
of geometrically uniform signal space codes based on this constellation is,
thus, identi�ed by the subgroups of (ZM )N . In this work we deal with a
particular kind of subgroups of (ZM )N which we call binary decomposable,
in analogy with binary decomposable lattices [1].

The latter are widely used in QAM transmission systems for the construc-
tion both of e�cient multidimensional constellations and good Ungerboeck
partition chains for TCM (trellis{coded modulation) codes [2] and can be
represented by their code formula:

� = 2kZN + 2k�1c0k�1 + : : :+ c00 (1)

where c0i (i = 0; 1; : : : ; k � 1) is a linear block code over (Z2)
N and the sum

is accomplished in ZN .

The generic binary decomposable code over an N�M{PSK constellation
is represented by a code formula of this kind [3]:

S = 2r�1cr�1 + : : :+ c0 (2)
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where ci (i = 0; 1; : : : ; k � 1) is still a linear block code over (Z2)
N but the

sum is accomplished in (ZM )N with M = 2r.

These PSK codes share with binary decomposable lattices some appealing
features. Firstly, it is easy to obtain binary partition chains and to apply the
Ungerboeck labeling [1]. Furthermore the parameters can be evaluated from
the corresponding parameters of the binary codes involved in the formula.
Finally a low{complexity suboptimal multistage decoding (MSD) algorithm
can be devised.

In [3] it has also been shown how to impose a natural condition for the
rotational invariance and to implement a simple di�erential encoder.

All of these reveal that such codes are extremely easy to deal with and
are particularly appropriate to be employed in TCM schemes.

In this work we describe the structure of the encoder and the decoder
for this class of codes, we present the design of some transmission systems
and we investigate their performance over the AWGN channel by means of
bounds and simulations in the presence of di�erential encoding and with a
MSD algorithm.

2. The code formula

It has been proved [3] that the code formula in Eq. (2) represents a group
if and only if the product (logic AND) between each couple of words of ci is
contained in ci+1:

ci 
 ĉi 2 ci+1 8ci; ĉi 2 ci (i = 0; : : : ; r � 2): (3)

The above criterion suggests a way to construct decomposable binary
codes over N �M{PSK constellations. Starting from a binary block code
c0, we build c0
 c0 and choose a code c1 that contains it as a subcode. The
procedure is iterated until the desired depth is reached.

Some performance parameters useful for the code design can be easily
evaluated starting from the parameters of the constituent codes.

We denote with (N; ki; di) the parameters of the code ci and with Ni its
error coe�cient. Further, we introduce the sets

Si � f0g [ f2r�1cr�1 + : : :+ 2icijci 6= 0g (i = 0; : : : ; r � 1): (4)

It has been shown [3] that the minimum Euclidean distance d2min(S) of
the code S represented by Eq. (2) is given by

d2min(S) = min
i=0;::: ;r�1

[d2min(Si)] (5)
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where

d2min(Si) = 4R2di sin
2 �2

i

M
(6)

and R is the radius of the M{PSK constellation.

The minimum distance alone allows only a rough estimation of the error
probability; a more accurate evaluation requires the knowledge of the error
coe�cient. A general bound for the error coe�cient in terms of the Hamming
weights and the number of information bits of the codes has been derived
[3].

We �rst de�ne the set

D � fijdmin(Si) = dmin(S) (i = 0; : : : ; r � 1)g: (7)

For the sake of notation uniformity we further de�ne cr = f0g. Denoting
by L(ĉi) the linear code of all the words having 0 where ĉi has a 0 and
introducing the linear code

S(ĉi) = ci+1 \ L(ĉi) (8)

the error coe�cient can be expressed as:

N0(S) =
X

i2D

X

ĉi

2dimS(ĉi): (9)

N0(S) can be upperbounded by

N0(S) �
X

i2D

Ni2
min(0;Ki+1�N�di) (10)

and lowerbounded by

N0(S) �
X

i2D

Ni2
max(0;Ki+1�N+di) (11)

It is interesting to observe that the equality is obtained in this lower bound
if and only if:

c�i+1 \ L(ĉi)
� = f0g 8i 2 D: (12)

The spectral e�ciency of the code S is measured by its rate: since it is

clear that each point can be mapped by words of K =
r�1P
i=0

ki bits, the rate

is K=N bits=2D.
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3. Rotational invariance and di�erential encoding

By virtue of the group properties of S , the rotational invariance is im-
posed by simply requiring that the sequence of N 1 belongs to S:

(1)N 2 S: (13)

From Eq. (2) it is obvious that Eq. (13) is satis�ed if and only if (1)N 2 c0.

S can be decomposed into a direct sum:

S = Si + Sr (14)

where Sr is the subgroup of S generated by (1)N and Si is the subgroup of
S containing all the sequences whose �rst element is zero.

Figure 1. Di�erential encoder for the group code S.

The transmitter, illustrated in Fig.1, performs a di�erential encoding only
over Sr. The block I contains r systematic binary encoders for the codes ci.
The �rst input of each encoder is set to zero, so that the whole input is
formed by K � r source bits. The outputs of the encoders are combined
according to Eq. (2) in order to represent a point of Si. The remaining
r bits are sent to a conventional di�erential encoder for a single M{PSK
constellation. Its output is repeated over N signaling intervals, producing
the points of Sr.

This di�erential encoding scheme may be used both when S is the whole
multidimensional constellation and when it is the last level constellation in
a Ungerboeck partition chain for TCM.

4. Multistage decoding and receiver structure

Although a maximum likelihood decoding algorithm may be used, its high
complexity suggests the search for low complexity suboptimal algorithms.
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In particular the decomposition in Eq. (2) suggests a multistage decoding
algorithm similar to the one proposed in [5].

We �rst observe that any codeword identi�es an isometry of the Euclidean
signal space. If the isometry corresponding to a prescribed codeword s 2 S
is applied to r 2 RN , the transformed vector will be denoted with rs. If x0
is the base point assumed for the constellation, every constellation point can
be uniquely represented as xs0 (s 2 S).

The algorithm operates as follows. At step 0 the received signal r0 is
decoded in 2(ZM )N + c0, giving rise to an estimation ĉ0 of the projection of

the transmitted point over c0. At step 1 r1 � r�ĉ00 is decoded in 22(ZM )N +

2c1 giving rise to ĉ1; at step i ri � r
�ĉi�1
i�1 is decoded in 2i+1(ZM )N + 2ici.

Finally, the estimations Ĉ0; ĉ1; : : : ĉr�1 are combined according to Eq. (2)
in order to recover an estimation of the transmitted point, as illustrated in
Fig.2.

Figure 2. Multistage decoding algorithm.

It is convenient to imagine that block i decodes in 2(Z2r�i)N+ci, which is
equivalent to 2i+1(ZM )N+2ici up to a relabelling of the constellation points.
For each coordinate this block chooses the two minimum metrics me and m0

in the subconstellations constituted by even and odd points respectively and
it passes them to a soft decoder for the binary code ci, which determines the
word ĉi.

It has been proved [3] that such MSD algorithm is bounded{distance as
in the case of lattices, i.e. it behaves as the maximum likelihood decoding
when the distance between the received signal and a point of S is smaller
than dmin(S)=2.

We notice that the algorithm is still bounded distance even if the soft
decoding algorithms for the binary codes are not optimal but bounded dis-
tance themselves. Therefore, if necessary, the decoding complexity may be
further reduced, using simpler algorithms for the codes.

The practical relevance of this MSD algorithm stems from its lower com-
plexity in comparison with the optimal algorithm and from its good per-
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formance, close to the optimum in the typical range of SNR's. Indeed the
dominant error exponent is the same as for the maximum likelihood algo-
rithm and the impairment in performance can be measured in a �rst approx-
imation by means of the equivalent error coe�cient of the bounded distance
algorithm.

Since each block in the MSD algorithm works independently from the
others, the equivalent error coe�cient is the sum of the error coe�cients of
the codes 2(Z2r�i)M + ci 8i 2 D:

N0;BD(S) =
X

i2D

NiPi (15)

where Pi = 2di if i < r � 1 and Pr�1 = 1.

The output of the multistage decoder is further processed by a di�erential
decoder and �nally delivered to an inverse mapper which recovers the infor-
mation bits, through a projection of the estimated point over the component
codes.

5. Performance of the codes

In Table 1 we report some rotationally invariant binary decomposable
codes with their code formula and their main parameters; it is worth noting
that all these codes can be obtained through the squaring construction so
that they can also be decoded by means of the optimal algorithm detailed
in [4]. For the codes #7, #9, #10 the MSD algorithm coincides with the
maximum likelihood decoding algorithm. For the other codes, instead, this
algorithm is suboptimal, even when its error coe�cient is equal to the error
coe�cient of the code.

In Fig.3 we illustrate the performance of the codes in Table 1 over the
AWGN channel in the case of optimal decoding. The codes are compared
at �xed error probability; as a reference the uncoded PSK modulations are
also indicated. All the points have been evaluated through the union bound,
on the basis of a signi�cant portion of the distance spectrum. Eb denotes
the average energy per bit of information, while N0=2 is the power spectral
density of the noise.
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Figure 3. (SNR E�ciency)/Rate Trade{o�.

In Fig. 4 we show the decrease of the performance in the case of the code
#6 due to the use of the di�erential encoding and the MSD algorithm with
optimal soft decoder at each stage. In the diagram we compare the union
bound of the point error probability for the case of optimal decoding with
the point error probability and the bit error probability for the case of MSD
and di�erential encoding. These latter two results have been obtained by
means of simulations on the computer and are guaranteed to di�er from the
correct values by less than 20% with probability of 0.8.

It is interesting to observe that the simulation values of the point error
probability are very near to the union bound results, which means that the
decrease of performance due to the MSD algorithm is extremely small. That
is motivated by the fact that N0 = N0;BD as it is illustrated in Table 1.

Obviously, the crossover between the �rst two curves depends exclusively
on the fact the union bound is a loose upper bound for low SNR's.

In Table 2 we report the decoding complexity per bit of information,
calculated as the number of sums and comparisons between real numbers,
for the cases of the optimal decoding algorithm detailed in [4] and the MSD
algorithm described in section 4.
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Table 1. Performance of some binary decomposable
codes over N �M{PSK constellations

# Code formula dmin(S)=R N0 N0;BD Bits=2D

1 4(Z16)16 + 2(16; 11; 4) + (16; 1; 16) 1.414 32 32 2.75

2 8(Z16)32 + 4(32; 31; 2) + 2(32; 26; 4) + (32; 1; 32) 1.531 9920 19840 2.81

3 4(Z16)32 + 2(64; 57; 4) + (64; 1; 64) 1.414 128 128 2.91

4 4(Z16)8 + 2(8; 7; 2) + (8; 1; 8) 1.082 112 112 3.00

5 4(Z16)16 + 2(16; 15; 2) + (16; 5; 8) 1.082 480 480 3.25

6 4(Z16)32 + 2(32; 31; 2) + (32; 16; 8) 1.082 1984 1984 3.47

7 2(Z16)16 + (16; 11; 4) 0.765 32 32 3.69

8 4(Z16)32 + 2(32; 31; 2) + (32; 26; 4) 0.780 9920 19840 3.78

9 2(Z16)32 + (32; 26; 4) 0.765 64 64 3.81

10 2(Z16)64 + (64; 57; 4) 0.765 128 128 3.89

Figure 4. Performance of code #6.

Table 2. Decoding complexity per bit of information
O: optimal decoding algorithm; MS: multistage algorithm

# 1 2 3 4 5 6 7 8 9 10

O 11.6 117 57.8 3.29 12.3 116 4.32 43.4 9.96 21.6

MS 6.52 14.7 29.4 1.17 3.21 27.8 4.32 10.7 9.96 21.6
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6. Conclusions

In this work we summarized the de�nition and the main properties of
binary decomposable codes over N�M{PSK constellations. We detailed the
implementation of the encoder and the decoder in the case of the application
of a di�erential encoding and a MSD algorithm. We presented some binary
decomposable codes and we investigated their performance on the AWGN
channel. We showed that the impairment in the performance due to the
suboptimal decoding algorithm can be neglected, while the decrease of the
decoding complexity is often dramatic.
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