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INFORMATION THEORY AFTER 50 YEARS

Du�san Draji�c and Dragana Baji�c

Abstract. In this paper an attempt is made to give a very short surway of
the development of Information Theory. Also, some thoughts concerning the
future of Information Theory are given.

1. Introduction

"Scienti�c theories deal with concepts, not with reality. All theoretical

results are derived from certain axioms by deductive logic. In physical sci-

ences the theories are so formulated as to correspond in some useful sense

to the real world, whatever that may mean. However, this correspondence

is approximate, and the physical justi�cation of all theoretical conclusions is

based on some form of inductive reasoning."

A. Papoulis: Probability, Random Variables
and Stochastic Processes (Preface)

In Communications it is especially important to have the above citation
in mind. The "real world" in Communications (messages, electrical signals
etc.) is not always easy to see and models must be made for the "invisible"
things.

Some parallels can be drawn.

In 19th century human race started to use more and more energy. At
the end of the century the corresponding theory was developed - Statistical
Mechanics with the well known Second Law of Thermodynamics (where
the notion of entropy was introduced, the entropy being regarded as a
quantitative measure of order against disorder).

In 20th century the "information era" started. Now, we are living in
the Information Age. In the middle of the century the corresponding
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mathematical theory of communication was brought by Claude Shannon
(including also the quantity named entropy).

One more parallel: at the beginning of the century Einstein gave the
relationship between mass, light velocity and energy. Shannon gave the
relationship between the attainable information rate, frequency band and
the signal power (energy).

It should be also noted that Shannon's theory appeared practically at the
beginning of the information era. So, some solutions had to wait for the
corresponding technology to be used in practice.

In fact, the theory in engineering sciences is usually a little "behind"
the practice, con�rming the practical experience. However, in Information
Theory the theory was partially far ahead and waited to be con�rmed by
practice.

In this paper a short surway of the development of Information Theory is
presented. At the end some thoughts concerning the future of Information
Theory will be given.

2. Communication processes modelling

Although the human race started to communicate from the very begin-
ning, the paper will start only from the beginning of the 20th century. The
electrical signals were used to transmit alphanumerical characters and voice
(a little later pictures as well). The model used was deterministic by its
nature. The Fourier analysis, invented a century ago to solve some other
problems, was used. The signals were regarded as a sine waves or as a their
sum (�nite yielding the Fourier series, an in�nite yielding the Fourier inte-
gral). The obtained results were used in designing classical analogue systems
(needed bandwidth, power etc.). In fact, these systems worked quite well
in "normal" conditions. But they operated badly in "severe" conditions, or
they could not operate at all (FM is unusable for negative { in dB { SNR).
The severe conditions are encountered also during the war, where security
is needed, too.

So, a better model had to be found. It was based on the probabilistic
approach. Indeed, two such models appeared.

Norbert Wiener, borrowing the notion of "ensemble" from Statistical
Physics and generalising harmonic analysis gave the basic principles of the
so{called Statistical Communication Theory.

Claude Shannon, on the other hand, started "from inside", i.e. from
communication problems themselves and provided a brilliant and elegant
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solutions. He created original mathematical concepts. His fundamental pa-
per "A Mathematical Theory of Communication" [1] (transcribed as "The
Mathematical Theory of Communication" by some scientists) is the
basis of Information Theory.

Both models are based on the probabilistic approach. Both use the same
mathematical apparatus. But, it is the only common thing.

The main problem in Statistical Communication Theory can be formu-
lated as follows: The transmitted signals are corrupted by noise (the signals,
as well as the noise are modelled as stochastic processes). How to extract
signals from noise (i.e., how to improve SNR)? The goal is achieved by the
so{called optimum �ltering and by correlation methods. For digital signal
transmission the matched �lter can be also regarded as a result of this theory.

In fact, the early beginnings of Information Theory are the works of
Nyquist [2] and Hartley [3]. Nyquist found the minimum frequency band
to transmit independent discrete signals at a given rate. Hartley proposed
to use the logarithmic measure for information (in fact, he said that the
information transmitted is proportional to the logarithm of the number of
di�erent signals we use { to the alphabet size).

The Shannon approach was totally di�erent from the Wiener one. One
should say it was at a higher level. He did not consider the signals, but the
information. The information is represented (encoded) by signals, which are
carriers of information. That means also that it is possible that transmitted
signals do not carry any information at all (from the Information Theory
point of view). Of course, these signals may be needed for the proper func-
tioning of the communication system itself (synchronisation etc.).

Shannon de�ned the quantity of information emitted by information sour-
ce and tried to �nd how to represent (encode) the information by the signals
so that the information remains undistorted even if the transmitted signals
are corrupted or distorted by noise. He investigated the limits of such a
system having in mind the source information rate and the channel charac-
teristics (parameters) { bandwidth and SNR.

A communication system from an Information Theory point of view is
presented in Fig. 1.

The �rst thing when one wish to describe mathematically some process is
to de�ne a corresponding quantity as well as a unit to measure it. So Shannon
had to de�ne the quantity of information in a message. For a discrete source
with �nite number of messages he de�ned the quantity of information as a
logarithm of the inverse of the message (symbol) probability. The average
information rate per symbol (from the source) is obtained by averaging it
over all symbols. If 2 is taken as a base for logarithm, the quantity of
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information is measured in shannons and information rate (suitably named
entropy, the expression being the same as for the entropy of ideal gas) is
measured in shannons per symbol. The entropy { H { can be thought as
a measure of our uncertainty which message (symbol) will be chosen and
emitted by the source. For a source with higher entropy this uncertainty is
higher.

Figure 1. Communication system as "seen" by Information Theory.

The next block is "source encoder". Its task is to represent (encode) the
information (messages { symbols) by signals in an e�cient way. Shannon
showed that the number of signals needed depends on the source entropy
(Source Coding Theorem).

The next one is "channel encoder" having the task to encode (represent)
the information by the channel signals (symbols) is such a way that no
information is lost if the signals are distorted and even if some �nite error
probability exists. Shannon showed that the error probability can be made as
small as possible if the information ow is smaller then the channel capacity
{ C { depending on bandwidth and SNR (Channel Coding Theorem).

After the corresponding decoders the last block is the "user". It was
not taken into account in the beginning. About ten years later [4] Shannon
brought the basis of the so{called Rate Distortion Theory where R(D) is
the minimum amount of information (shannons per symbol) needed by the
user allowing some distortion of information, quantitatively described by D.
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3. Basic results of information theory

3.1 Source coding

The Source Coding Theorem simply states that (for binary signals { bits)
the average number of bits needed to encode the source symbol can be made
as small as entropy, but not smaller.

The source encoding is accomplished by giving the shorter code words
to the symbols with higher probabilities (the same thing did Morse with-
out knowing Information Theory). The algorithms for source encoding
(Shannon{Fano and Hu�man) were published just a few years after the ba-
sic Shannon's paper. Generally, the Hu�man algorithm is the optimum
one. Shannon also mentioned "arithmetic" encoding based on the cumula-
tive probability.

One of the drawbacks of source encoding is that when one symbol is in
error, the synchronisation between encoder and decoder will be lost for some
time resulting in a series of erroneously decoded symbols. The e�orts have
been made to �nd the suitable code words so as that resynchronisation is
obtained as fast as possible.

One may ask oneself: Now we have disks with memory measured in giga-
bytes, also more gigabits per second (1.1 terabit per second is the last result)
can be transmitted through the �bre. Is there any need to compress? The
answer is: yes!

Every engineer knows that any system should be used e�ciently. So, why
not put twice (or even three times) more data on the same disk without any
change in hardware? Why not transmit twice more data per second through
the same channel?

It should be noted that the mentioned algorithms for source encoding
are based on the complete knowledge of source statistics (i.e. symbol prob-
abilities). But sometimes we do not know the source statistics. We have
no time to store the whole incoming sequence, analyse it, and choose the
corresponding code. Then, the adaptive methods are used.

The statistics is performed on the incoming part of a sequence and a
corresponding adaptive encoding is performed. The adaptiveness is based
on the fact that we know more about incoming sequence, as we have a larger
part of it.

Almost all codes for data compression are made in such a way. The best
known procedure is Ziv{Lempel encoding (LZ codes) with many versions. If
a processed sequence is relatively long, then the adaptive method will attain
the limit prescribed by Source Coding Theorem (attainable with Hu�man
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encoder, but with theoretically in�nite delay { waiting the end of a sequence
to start).

It should be noted also that in the case of LZ codes and their versions
there is no need for encoder and decoder to communicate before the start (by
sending a list of code words as in the Hu�man coding), because they begin
to work on the same sequence. So decoder can draw the same conclusions as
the encoder at the beginning and then to apply them for further decoding.

It is also assumed that the statistics (known or not known) of the sequence
does not change with time. For such a case there is a mathematical argument
that the coding will be e�cient. It is Asymptotic Equipartition Property the
consequence of which is that almost all (i.e. with probability approaching
to 1) sequences emitted by the source will be from the "typical set", i.e., all
will have the entropy near to the source entropy as the length of a sequence
approaches to in�nity. For example, the number of possible binary sequences
of n bits is 2n, but if the source entropy is H, then the number of the
sequences in a typical set is 2nH .

For those wishing to have a better insight into LZ encoding, just a hint.
Kholmogorov de�ned the complexity of a sequence as a length of a computer
program to generate it. LZ algorithms can be thought out as an attempt to
write such a program during observing the incoming sequence.

So, the Source Coding Theorem is the basis of non{destructive (loss-
less) text compression, i.e. the original text can be reconstructed in the
whole.

One of the interesting examples is the compression of the English text
(Shannon wrote the paper "Prediction and Entropy of Printed English" [5]).
He considered a text to be a Markov chain and tried to predict the "true"
entropy of English �nding it to be near to 1 shannon per letter, instead
between 3 and 4, the result obtained when considering the text as being
without memory.

It is interesting to note that Markov took also the text (the Russian one!)
as an example, when formulated his theory.

Here is the very place for a little discussion about modelling. Almost all
models of English (as well as of other languages), suppose that it can be
modelled as a Markov chain with constant memory, considering space sign
as a part of the alphabet. In fact, the sounds (phonemes, as linguists call
them) are written using letters. The sounds are generated by human being
using vocal tract. So, the sequence of letters depends on the possibility of
successive sounds pronunciation in a continuous speech. If there are pauses
between words, as they should be, then the pauses can not be treated in
the same way as other sounds. They just ease the pronunciation. In fact,
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in a better model the text should be considered as a "pulsed" Markov chain
where statistical dependence between letters is disrupted at the end of a
word (at least at the end of a sentence). With a new word, i.e. after a space
sign, a dependence starts anew from the �rst letter.

It is also possible to model a text (speech) using words as units (at a
syntactic level!) instead of letters. It is interesting for automatic translation.

3.2 Channel coding

The Channel Coding Theorem states that the information can be trans-
mitted with the probability of error being as small as possible (but not
zero!) until the information ow is less than the channel capacity. The
theorem was proved on the basis of random coding argument. So, it did
not show how to �nd a channel code. It only gave the limit that can be
approached by long coding sequences (theoretically when length approaches
to in�nity). This theorem is a basis for error control coding. These codes are
used for transmission as well as for the information storage (magnetic disks,
CD etc.). The error control coding theory ourished for many years based
sometimes on very speci�c mathematical apparatus (e.g. Galois Fields!) or
giving sometimes the results having to wait to be put in practice with a new
technology.

Now, after Ungerboeck's invention of trellis-coded modulation (TCM) [6],
we have the �rst case where we approached to the limit given by Information
Theory. In fact, even with commercial modems (with data rates 28800 b=s
and even 33600 b=s) we are very near to the capacity of the telephone channel
now! The telephone channel is regarded as band{limited Gaussian noise
channel.

As a newest things in this �eld we will mention only turbo{codes [7] being
very e�cient at low SNR as well as that some non{linear codes (Preparata)
can be regarded as linear in some higher mathematical structures [8] easing
the corresponding coding and decoding procedures.

It should be noted that capacity was de�ned for point{to{point trans-
mission (channel). Now, the Network Information Theory is developing. It
is a system with many senders and receivers (multi{user) and many new
elements as well (interference, co{operation and feedback). The general
problem is: Given many senders and receivers and the channel transition
matrix (describing the e�ects of interference and noise), decide whether or
not the sources can be transmitted over the channel (for example TDMA,
CDMA). In fact we do not talk about channel capacity but about the whole
medium capacity. The general problem has not yet been solved, but only
for some special cases.
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3.3 Rate distortion theory

While the Source Coding Theorem concerns to so{called non{destructi-
ve data compression where the original information must not be distorted,
here the "wishes" of the user, concerning the "distortion" of the received in-
formation are taken into account. In fact, the user dictates the "�delity
criterion" and the average allowable distortion per symbol (D). So Rate
Distortion Function R(D) is de�ned as giving the minimum mutual infor-
mation between the source and the user needed for the average distortion
being smaller than allowed (D).

So, it is, in fact, destructive (in good will, of course) (lossy) data
compression. This part of Information Theory is the basis for �nding the
limits when quantising the analogue signals (speech, picture (image) etc.).
The theory can be applied to the discrete sources as well.

3.4 General impact of information theory

on communications

Firstly, it should be noted that all important quantities are obtained by
statistical averaging. So, all results should be taken "on the average" { over
long symbol sequences. But our aim is the same { our system should work
e�ciently on the long run.

Further, the ultimate limits in Communications are given by Information
Theory, sometimes without the clear algorithm how to approach them. So,
we know what we can do and what we cannot do. But we have often ourselves
to �nd how to do that what we can do according to theory.

Last, but not least, let us discuss the capacity of the "human channel",
.i.e. what are our limits when we communicate (consciously) with the out-
side world. The information rate (ow) of the language is smaller than 50
shannons per second (according to the Information Theory it is near to 10
shannons per second). So, we need only 50 bits (or less) per second to trans-
mit speech. In practice, there are commercial vocoders using 1200 b=s or
less. In laboratories we are under 300 b=s. For understanding the received
speech, the capacity of our ear (hearing system) should not be greater than
50 Sh=s. In fact it is shown that the human being cannot consciously com-
municate (taking into account all �ve senses) with the surrounding faster
then at the rate of 300 Sh=s. It is the human channel capacity. So, there
is still much room, especially to compress the pictures. Many standards
were created or are created now for e�cient speech and picture transmission
(JPEG, MPEG1, MPEG2 etc.).

We are now in picture (image) compression under a hundred kb=s and
try to transmit a picture by a modem over the telephone channel (having
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videoconferencing and a multimedia in view). From the Information The-
ory point of view it is possible to approach the rate of 300 b=s for picture
transmission, but we still do not know how. Of course, this limit can be
approached only asymptotically.

3.5 Information theory and other �elds

Information Theory was born inside the Communications and primarily
for Communications. Still, it sometimes pays to apply the fresh ideas from
one �eld into another �eld.

Shannon, himself, formulated a theory of cryptography (secrecy systems)
in terms of the concepts of Information Theory [9]. He showed that the
entropy of the language (in fact its complement { the redundancy) is related
to the possibility for solving cryptograms in this language. For simple sub-
stitution cipher he calculated the minimum length of the cryptogram (the
number of letters in it) needed to break the cipher The result was con�rmed
in practice. He also de�ned a "perfect secrecy" using entropy concept. The
same approach can be used to obtain the average number of frames needed
to obtain the frame synchronisation.

There were also many other attempts to apply the concepts of. Infor-
mation Theory in other �elds (biology, genetics, psychology, linguistics, eco-
nomics etc.). Some of them gave results, some did not. Why?

In fact, This is the question of the model. The basic results of Informa-
tion Theory are aimed at a very speci�c direction { a direction that may
not be necessarily relevant to all �elds. So, everyone trying to apply con-
cepts of Information Theory in some other (his!) �eld should know also
the mathematical foundations of Information Theory as well as its commu-
nication application. That would help him to evaluate the applicability of
Information Theory concepts in his own �eld.

If the model is adequate (and well understood) then some results can be
obtained intuitively (and later con�rmed mathematically). Two examples
will be given.

Example 1:

The following inequality

lnx � x� 1; x � 0

where equality holds only at the point x = 1, can be easily veri�ed. Consider
any two probability distributions fp0; p1; : : : ; pK�1g and fq0; q1; : : : ; qK�1g
of the alphabet S = fs0; s1; : : : ; sK�1g of a discrete memoryless source. We
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may then write
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Thus, we have the fundamental inequality
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where the equality holds only if qk = pk for all k. Suppose we next put

qk =
1

K
; k = 0; 1; : : : ;K � 1

which corresponds to an alphabet S with equiprobable symbols. The entropy
in this case equals
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�
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�
= log
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also, putting qk = 1=K in the fundamental inequality yields
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�
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�
� log

2
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So, the entropy of a discrete memoryless source with an arbitrary probability
distribution for the symbols of its alphabet is bounded with log

2
K. The

equality holds only if the symbols are equiprobable.

It is a proof that maximum entropy for a case of discrete source without
memory will be obtained when all symbols are equiprobable. The intuitive
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proof is: The entropy measures our uncertainty about the source (about the
symbols { which one will be emitted). The uncertainty will be maximum
when all the symbols are equally likely.

Now, another example, a little more sophisticated.

Example 2:

The entropy of a continuous random variable X, often called di�erential
entropy, is de�ned by

H(X) = �
1Z

�1

wX(x) log2 wX(x)dx

How to �nd the probability density function wX(x) for which the entropy is
maximum, subject to the following constraints:

1Z
�1

wX(x)dx = 0

and
1Z

�1

(x� �)2w)X(x)dx = �2 = const

where � is the mean of X and �2 is its variance.

The method of Lagrange multipliers will be used. The entropy will attain
its maximum value only when the integral

1Z
�1

[�wX(x) log2 wX(x) + �1wX(x) + �2(x� �)2wX(x)]dx

is stationary (the parameters �1 and �2 are Lagrange multipliers. So, the
entropy is maximum only when the derivative of the integrand with respect
to wX(x) is zero, i.e.

�wX(x) log2 wX(x) + �1wX(x) + �2(x� �)2wX(x) = 0:

This yields the result

� log
2
e+ �1 + �2(x� �)2 = log

2
wX(x)

= (log
2
e) lnwX(x)
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Solving for wX(x), we get

wX(x) = exp[�1 + �1
log

2
e
+

�2
log

2
e
(x� �)2]

Taking into account the constraints we get

�1 =
1

2
log

2

� e

2��2

�
and

�2 = � log2e

2�2

yielding �nally

wX(x) =
1p
2��

exp

�
� (x� �)2

2�2

�

i.e. the well known Gaussian probability density.

It is a proof that a "continuous" information source (in fact, a continu-
ous random process) for speci�ed variance will have a maximum di�erential
entropy for Gaussian probability density. The intuitive proof is as follows:
According to the Central Limit Theorem, the resultant probability density
for the sum of independent random variables is Gaussian. So, a Gaussian
probability density is a result of "independent causes" and our uncertainty
(and the entropy as well) for such a random variable must be maximum.

4. Conclusion

At the end, a few thoughts about the future of Information Theory It is
better not to be a prophet, but some trends can be seen now.

Firstly it is a development of multi{user Information Theory.

Further, it is the so{called "universal coding" i.e. coding without knowing
the exact source statistics (or where such a statistics is not easy to model {
for example images).

Also, there will be always some new error control codes, as well as some
new decoding algorithms for a known codes { the algorithms more suitable
for technology to come.

Turbo codes were �rstly discovered and later properly understood. they
were obtained by concatenation of two or more convolutional codes and
decoded by iterative decoding. They are very e�cient at a very low SNR. In
fact, these codes approach the channel capacity. There is still more room to
try various codes as well as to implement more e�cient decoding algorithms.
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It should also be mentioned the possibility of "soft{decision" decoding for
some well known and frequently used codes (e.g. Reed{Solomon codes [10]).
The similar ideas can be tried also for some other codes.

An interesting unsolved theoretical problem is the "zero-error channel
capacity". i.e. the capacity of channel without errors.

At the end, we should remind ourselves that on the cover of Transactions
on Information Theory it is written that "the boundaries of these transac-
tions are deliberately not sharply de�ned".
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