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WAITING TIMES IN ORWELL AND ATMR

Mirjana Za�rovi�c{Vukoti�c and Ignatius G. M. M. Niemegeers

Abstract. The Orwell and ATMR basic access mechanisms are modelled
in this paper. The full slots are either released or reused by the destination
station. The tra�c matrix is fully symmetric, and a station may send to itself,
as well. The new approximate analytic model is based on a random polling
model with the Markovian server routing. Its accuracy is proved by comparing
to the simulations results.

1. Introduction

This paper deals with a slotted ring basic access mechanism in high speed
local area networks which are ATM oriented, and also called ATM rings. In
particular, only the mechanism which applies the destination release of used
slots, like Orwell [2] and ATMR (ATM Ring) [1], is considered.

Figure 1. A full slot trajectory.
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The basic access mechanism in such rings is as follows. The ring is parti-
tioned into equal length slots, as illustrated in Fig. 1. Slots circulate around
the ring and can be empty or full. A full slot is occupied by a minipacket.
A full slot circulating around the ring, reaches the destination station which
reads it in. We assume that each station is capable of using every empty
slot that arrives and of reading every slot destined to itself. The destination
station may reuse the slot that was full for its own transmission.

Modeling of the basic access mechanism in Orwell without slot reuse has
been done in [3], as such access method was proposed at the time. A bulk
arrival process typical for a �le transfer was considered. The slot reuse
models are not available in the literature.

We model such mechanism by a multiple server, multiqueue system where
switch{over times between the consecutive polling instants of the queues are
non{zero. The service strategy at a queue is 1-limited. The server polls
the queues according to a certain polling discipline, which is dependent on
the service time. The waiting time approximation in this paper is based on
a polling model with Markovian server routing, 1-limited service discipline
and Poisson arrival processes.

2. The general model

The ring is partitioned intom slots. The ring duration is � . The ATM ring
has n stations (queues) Q1; : : : ; Qn. We assume that the distance between
the consecutive stations is equal to �. Customers arrive at Qi according to
independent Poisson processes with intensity �.

The following fully symmetric tra�c matrix is considered in this paper:
each minipacket which originated at Qi has the destination Qj with the
probability 1=n for all i; j = 1; : : : ; n. Note that a station sends minipackets
to itself, as well.

The queues are polled by multiple servers, each corresponding to a slot.
When the queue polled Qi is empty, the server S polls the next queue Qi+1.
Otherwise, S serves according to a 1-limited service discipline, i.e., it serves
only one customer at Qi. This corresponds to the transfer of a minipacket in
a slot from Qi to Qj . The service time corresponds to the slot propagation
time from the source Qi to the destination Qj . After that service, S polls
Qj . Thus, the polling discipline is dependent on the service time. The
switch{over time of the server between the previously polled queue and Qi

is a constant and equals �. The service times of customers are i.i.d. variables
B with the following distribution, and the �rst two central moments:

PfB = (k � 1)�g =
1

n
; k = 1; 2; : : : ; n (1)
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� =
(n� 1)�

2n
(2)

�(2) =
(n� 1)(2n� 1)�2

6n2
: (3)

The o�ered tra�c at Qi, �, is de�ned as

� = ��: (4)

This description of the multiqueue multiple{server model accurately cor-
responds to a multiple and a single slot ring (m � 1). Unfortunately, this
model can not be solved. In the sequel, at �rst we consider a single slot case,
and provide an approximate solution to it (Section 3.). Than, we extend that
approximate solution to a multiple slot case (Section 2.).

3. The single slot ring

Let us consider a single slot ATM ring at �rst. Thus, we have a single
server multiqueue polling model. Since m = 1, we have

� = �; (5)

and
� = n� (6)

The polling discipline in the multiqueue model of the ATM ring is depen-
dent on the service time. For the moment we assume that it is not. We use
a polling model with a Markovian server routing as illustrated in Fig. 2.

Figure 2. The queuing model of an ATM ring

with Markovian server routing.
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So, an empty slot visits the next downstream station with the probability
a, and some other station with the probability b, after the departure from
Qi. If Qi didn't use the slot, but it relieved it empty, the slot visits the next
downstream station Qi+1. An empty slot visits some other station but Qi+1

only if Qi released a full slot. Following that reasoning, we have that the
server visits Qj on the departure from Qi with the probability pij :

pij =

8><
>:

a = 1�	+
1

n
	; j = i+ 1;

b =
1

n
	; j 6= i+ 1

(7)

with
a+ (n� 1)b = 1; a; b > 0 (8)

In the sequel the system is assumed to be in equilibrium. 	 equals the
probability that the queue to which the service is o�ered is not empty. Due
to the work balance argument 	 also equals the mean number of arrivals
to Qi between two successive visits (and potential services) of the server at
Qi. Because of Eq. (A.14) of Appendix, and taking Eq. (4), the value of
parameter 	 is as follows

	 = �
�

1� n��
: (9)

Substituting Eqs. (2) and (5) into Eq. (9), we get

	 =
2��

2� (n� 1)��
: (10)

Note that 0 < 	 < 1 due to the stability condition. Namely, the exact
stability condition can be derived from Eq. (A.14), and it is 	 < 1, i.e.

2��

2� (n� 1)��
< 1: (11)

The pseudo{conservation law for Markovian server routing case [4] leads
to the expected minipacket waiting time EW , as follows:

EW =
n��(2) + n��+ �

2(1 � n�� n��)
+

1� n�

n(1� n�� n��)

nX
k=1

k 6=i

ETki (12)

where ETij := Ef time between a departure of slot/server S from Qj and
its last departure from Qig. Substituting Eqs. (4), (6) and (A.10) into Eq.
(12),

EW =
1

1� n�� � ��

2
4n��(2) + ���

2
�

�

2n
+

�

n2

nX
j=1

yj

3
5 (13)
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with
P

yj given in Eq. (A.19). Further, substituting Eqs. (2), (3), (5) and
(A.19) into Eq. (13), we get

EW=
�

n(2� ��(n+ 1))

�
��(n� 1)(n+ 1)

3
�1+2

�
n

1� (1�	)n
�
1�	

	

��

(14)
with 	 given in Eq. (10).

4. The multiple slot ring

Let us consider a multiple slot ATM ring in this section. Thus, we have
a multiple server multiqueue polling model.

The simulation results show very small di�erence between the delays in
the single and multiple slot case, as it is to be presented in Appendix B (at
most 4% for all loads and in all cases). An intuitive explanation to this is
that the m servers tend to cluster, appearing as a group of servers to the
customers.

We approximate a multiple server model withm servers by a single server
model having an m times faster server. As applied to the ATM oriented ring,
this implies that the m slot ring is approximated by a single slot ring which
is m times shorter.

Such an approximation leads to the exact stability condition. Note that
the stability condition Eq. (11) is independent of the number of slots and
that it also holds for a multiple slot ring.

Therefore, the same mean waiting times estimates of Eq. (14), are used for
a single and for a multiple slot ATM ring in this paper. Note however, that
the mean sojourn times, i.e. the mean times between the message arrival at
the source and its delivery at the destination must be quite di�erent, due to
the m times longer propagation between the source and destination station
in a multiple slot ring as compared to the single slot ring.

5. Testing the model

A detailed object{oriented simulation model of the ATM ring has been
made in Turbo Pascal 6.0. The following con�guration, system parameters
and workload have been considered: con�guration: transmission rate = 155
Mbit/s, number of slots = 1, 30, number of stations = 30, 10 and 2; system
parameters: slot information �eld = 48 byte and overhead in slot = 6 byte;
and workload: Poisson arrivals of minipackets with relative intensity which
is equal to �=�sup. The slot duration equals � = 2:787�s.



182 Facta Universitatis ser.: Elect. and Energ. vol. 11, No.2 (1998)

The results of the simulations, compared to the approximate analytic
results, are shown in Tables 1{3 in Appendix B. The results are also illus-
trated in Fig. 3, where the high and low load delay estimates are shown.
They are determined using random and cyclic polling models, substituting
Eqs. (A.20) and (A.21) into Eq. (13). The expected minipacket delays are
shown normalised to the slot duration �.

Figure 3. The expected minipacket delays vs. relative load

per station in a ring with 2 stations and 30 slots.

The simulations have been quite lengthy, mostly slot duration i.e. 7:5 h
simulated time. 90% con�dence intervals have been obtained which are quite
small in all experiments due to the lengthy runs. The largest halfwidth
con�dence interval is 0.06 slot duration for the relative load of 0.95.

The analytic model gives an estimate of the expected minipacket waiting
time which di�ers from the simulations as follows.

a) For relative loads up to 0.60 the di�erence is less then 0.21 slot duration
or 0:6�s and the estimate deviates from the simulations results by less
then 9%.

b) For the 0.80 relative load the di�erence is less then 1.4 slot duration or
3:8�s and the estimate deviates from the simulations results by less then
20%.

c) For very high relative loads in excess of 0.80, the analytic model has an
underestimate of the expected delays (for the 0.95 relative load up to
35%), and it is not applicable for such loads. Clearly, at very high loads
the simulations shows very high delays which are even higher than those
obtained by the random polling model. This shows very a high in
uence
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of the correlation between the service time process and the polling process,
at very high loads, which leads to the inaccuracy of the estimates.

6. Conclusion

A new approximate queuing model for Orwell [2] and ATMR has been
developed leading to the exact stability condition in Eq. (11). The ex-
pected minipacket waiting times estimates have been developed, see Eq.
(14). Please note that the tra�c matrix is fully symetric, and that a sta-
tion may send to itself, as well. The tests against the simulations show the
models applicability for relative loads up to 0.80, with the inaccuracy in the
delay estimates of not more than 3:8�s or 20%.

Appendix A: Derivation of
P

ETki

Note that the equilibrium distribution of the polling probability qi for
queue Qi equals

qi =
1

n
(A:1)

The expected time between the arrival of the server at Qi and its subse-
quent departure from Qi, equals [4]

EVi =
1

qi

��

1� n�
(A:2)

Let us de�ne
fi = EVi + � (A:3)

Combining Eqs. (A.1), (A.2) and (A.3), we obtain

fi =
�

n(1� n�)
(A:4)

Let us now evaluate ETki. According to [4],

ETki = fi

2
41 + 1

n

X
l6=k

(xik + xkl � xil)

3
5 (A:5)

with xij := Ef# steps required for the �rst entrance into Qj starting from
Qig. After some algebra, Eq. (A.5) becomes

X
k 6=i

ETki = fi

8<
:(n� 1) +

1

n

2
4X
k 6=i

X
l6=k

xik +
X
k 6=i

X
l6=k

xkl �
X
k 6=i

X
l6=k

xil

3
5
9=
;
(A:6)
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It can easily be obtained

X
k 6=i

X
l6=k

xik = (n� 1)

nX
k=1

xik � (n� 1)xii (A:7)

X
k 6=i

X
l6=k

xkl =
nX

k=1

nX
l=1

xkl �
nX

l=1

xil �
nX

k=1

xkk + xii (A:8)

X
k 6=i

X
l6=k

xil = (n� 2)

nX
l=1

xil + xii (A:9)

Substituting Eqs. (A.4), (A.7) { (A.9) into Eq. (A.6), we get

X
k 6=i

ETki =
�

n(1� n�)

2
4 nX
j=1

yj � n

3
5 (A:10)

where

y1 = xk+1;k : : : yi = xk+i;k : : : yn = xkk; k = 1; : : : ; n: (A:11)

In addition, using Eq. (A.1), it can easily be shown

yn = xii =
1

qi
= n: (A:12)

Note now, that ETii, the expected time between two successive visits (and
potential services) of the server at Qi equals

ETii = xiifi; (A:13)

and substituting Eqs. (A.4) and (A.12) into Eq. (A.13)

ETii =
�

1� n�
: (A:14)

From the theory of Markov chains, we have

2
66666664

y1
y2
: : :
yi
: : :
yn�1
yn

3
77777775
=

2
66666664

1
1
: : :
1
: : :
1
1

3
77777775
+

2
66666664

b b b : : : b : : : b 0
a b b : : : b : : : b 0

: : :
b b b : : : b : : : b 0

: : :
b b b : : : b a b 0
b b b : : : b : : : a 0

3
77777775
�

2
66666664

y1
y2
: : :
yi
: : :
yn�1
yn

3
77777775

(A:15)
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The �rst equation of Eqs. (A.15) and Eq. (A.12) lead to

nX
j=1

yj = n+
1

b
(y1 � 1); b > 0: (A:16)

After some algebra from Eqs. (A.12) and (A.15), it can be obtained

y1 = n
1� 


1� 
n
(A:17)

with 
 = a� b or, because of Eq. (7),


 = 1�	: (A:18)

Further, from Eqs. (A.16), (A.17) and (A.18), we get,

nX
j=1

yj = n

�
n

1� (1�	)n
�

1�	

	

�
: (A:19)

A random polling system [5] can be represented by b = 1=n, leading to
	 = 1. Then, from Eq. (A.19)

nX
j=1

yj = n2; b =
1

n
: (A:20)

If b = 0 i.e. in a cyclic polling system, starting from Eqs. (A.12) and
(A.15), it can be shown that

nX
j=1

yj =
n(n+ 1)

2
; b = 0: (A:21)

Appendix B: The expected minipacket delays tables

Table 1. Delays for a single slot ring with 30 stations

relative load simulations EW

load [Mb/s] [slot] [slot]

1 2 3 4

0.20 53 0:76� 0:00 0.76

0.40 107 1:26� 0:00 1.22

0.60 160 2:46� 0:00 2.25

0.80 213 6:93� 0:00 5.56

0.95 253 38:67� 0:04 25.24
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Table 2. Delays for a ring with 10 stations

relative load simulations [slot] EW

load [Mb/s] 1 slot 30 slots [slot]

1 2 3 4 5

0.20 50 0:74� 0:00 0:74� 0:00 0.75

0.40 109 1:18� 0:00 1:21� 0:00 1.19

0.60 150 2:18� 0:00 2:25� 0:00 2.15

0.80 200 5:56� 0:00 5:66� 0:00 5.28

0.95 238 27:48� 0:04 27:47� 0:04 24.12

Table 3. Delays for a ring with 2 stations

relative load simulations [slot] EW

load [Mb/s] 1 slot 30 slots [slot]

1 2 3 4 5

0.20 37 0:67� 0:00 0:67� 0:00 0.69

0.40 73 0:95� 0:00 0:96� 0:00 1.02

0.60 110 1:50� 0:00 1:54� 0:00 1.71

0.80 147 3:17� 0:00 3:30� 0:00 3.88

0.95 175 13:05� 0:06 13:56� 0:04 17.48
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