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TRELLIS SHAPING AND SPECTRAL NULLS

Josef Forster

Abstract. A line coding scheme based on trellis shaping is presented. The
trellis shaping algorithm is used to obtain a signal with a controlled running
digital sum as well as to achieve a Gaussian{like amplitude density distribution.
The former causes a �rst order spectral null at zero frequency, while the latter
allows to preserve a signi�cant part of the gain attained by pure trellis shaping.
Spectral nulls at arbitrary frequencies as well as second order nulls can easily
be realized. The complexity of a slightly modi�ed four state Viterbi algorithm
is su�cient to achieve the major part of the possible gain.

1. Introduction

From the early beginning of digital transmission line coding has been an
important subject. Although the most important aim is to obtain a spectral
null at zero frequency, e.g. for AC{coupled baseband transmission, there
are as well applications that require nulls at other frequencies in the signal
spectrum (HDTV, magnetic recording). While line coding focuses on the
transmitter side, there is also a possibility to compensate an AC{coupled
channel at the receiver using decision feedback techniques. Due to signi�cant
losses [1], depending on the noise spectrum, and a quasi{catastrophic error
propagation this method will not be discussed further.

The ideal line code produces a �rst or second order spectral null at the
desired frequency, doesn't a�ect the distance properties of the original signal
sequences, exhibits a very low decoding complexity, and doesn't increase
signal power. Even if especially the latter requirement cannot be ful�lled in
an ideal way, it is a challenging task to keep the loss as small as possible.
Moreover, one usually wishes to have some in
uence on the width of the
spectral null, i.e. the cut{o� frequency.

Most of the traditional approaches introduce an expanded signal constel-
lation together with some kind of encoder or discrete{time �lter to shape
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the transmitted sequence [3][4][5]. In this case, the encoder frequently im-
proves the distance properties of the transmitted sequence. Unfortunately,
high decoding complexity is necessary to make use of this improvement. If,
on the other hand, one decides to drop this advantage for sake of a sim-
pler decoder, that means not to track the encoder states in the decoder, the
gain in euclidean distance (which costs an increase in average power of the
transmitted signal emanating from the signal set expansion) is lost.

Forney showed in his work about Trellis Shaping [6] how trellis codes can
be used to shape the amplitude distribution of a signal, which results in a
decrease in average signal power. As in all trellis{coded schemes the �rst
step is to expand the signal constellation. The signal points are selected
from this expanded constellation according to a Gaussian{like probability
distribution, leading to a gain of up to 1.53 dB compared to the unshaped
signal. The Gaussian{like distribution results from an optimization of the
transmitted sequences with respect to their average energy.

In this paper, it is shown that it is possible to obtain a spectral null at
an arbitrary frequency if the power of the running digital sum is used as an
optimization criterion instead of the average signal power, and that both a
true spectral null and a signi�cant part of the shaping gain can be obtained
if both criteria are combined.

2. A short review of Trellis shaping

This section gives a short summary of the basic ideas of trellis shaping
as discussed in detail in [6]. In this context we concentrate on aspects that
are of special interest for spectral shaping. In order to distinguish Forney's
introduction of trellis shaping to obtain a Gaussian{like signal distribution
(and thus to minimize the average power of the signal) and the approach
presented here we call the �rst one power oriented shaping (POSH) and the
latter one spectral oriented shaping (SOSH). Then we use the term trellis
shaping for the technique itself, regardless what properties of the signal are
in
uenced.

In this paper sequences are represented by their D{transforms and marked
with small letters: a = a(D) = : : : + a��1D

��1 + a�D
� + a�+1D

�+1 + : : : .
A single symbol at time � is referred to as a� . All sequences are assumed to
be wide sense stationary and calculations are done in GF (2) in their binary
representation. Matrices of polynomials in D are represented by bold capital
letters: B = B(D). A code CS is given by a generator matrix GS.
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Figure 1. A trellis shaping system supporting k + 1
(uncoded or coded) bits per two dimensions.

In the following we discuss the trellis shaping system depicted in �gure
1. This scheme supports k + 1 bits per two{dimensional symbol using a
square constellation of 2k+2 signal points from a translated version of the
lattice Z2. Throughout this paper a two{dimensional symbol is physically
represented by two consecutive one{dimensional symbols, but generally may
also be chosen as inphase and quadrature component in amplitude/phase
modulation schemes. With this constellation we have a redundancy of 1 bit
per two dimensions, which is used to select a sequence from a given shaping
code CS with respect to a given criterion.

The initial sequence m0 (2 bit) stems from the input sequence s (1 bit)
passed through an inverse syndrome{former (H�1

S
)T for the shaping code

CS . The initial sequence m0 is modi�ed by adding a shaping sequence h
selected by the shaping decoder. Since any sequence h from CS is orthogo-
nal to any sequence produced by an inverse syndrome former for CS, both
sequences are separable. The mapping function is, similar to Forney's sign
bit shaping such that the modi�ed bits mv choose the sign, i. e. the quad-
rant of the 256 point square constellation. Thus the sequence s can easily
be recovered by passing the estimated sequence m̂ obtained by a decision on
the sign of the channel output through the syndrome{former HT

S
.

Formally, a syndrome{former HT
S
for a convolutional code CS with gen-

erator matrix GS is de�ned by

GSH
T
S = 0: (1)

For any sequence h 2 CS
hHT

S = 0: (2)

An inverse syndrome{former is de�ned by

�
H
�1
S

�T
H
T
S = 1: (3)
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Hence we can write for the noiseless case

x̂ = m̂H
T
S =

h
s
�
H
�1
S

�T
+ h
i
H
T
S = s: (4)

In order to avoid unnecessary error propagation the syndrome{former in
the receiver should be the minimal feedback{free version, which exists for
every binary linear convolutional code, see [7][8]. The inverse syndrome{
former, which needs not necessarily be feedback{free (and which is not
unique), can be chosen arbitrarily.

Hence the shaping decoder can select a sequence h with respect to an
arbitrary criterion without a�ecting the sink sequence ŝ. For the classical
application of trellis shaping (POSH), i.e. minimizing the average energy
of the transmitted signal, the decoder is an implementation of the Viterbi
algorithm (VA) [9] with a metric function

�POSH(�) = E(�) =

�X
�=�1


� =

�X
�=�1

��M�b� + (m0� � h�)
���2; (5)

where M is the mapping function (cf. �gure 1) and h� are the modi�cation
bits belonging to the considered state transition in the trellis. Searching
a path with minimal �POSH is equivalent to search for a sequence h from
CS that (added in GF(2) to the initial sequence m0) minimizes the average
energy of the transmitted signal. The shaping gain achieves about 1 dB for
trellis codes with four to eight states.

Note: The implementation of the VAmust ensure that the decoder selects
only valid sequences h from CS . Otherwise the syndrome former output ŝ
will no longer be una�ected by h since hHT

S
becomes 6= 0 (compare with

(4)).

3. Spectral nulls

The following subsection is a short overview of mathematical properties of
sequences exhibiting a spectral null at zero or at an arbitrary frequency. In
the second subsection it is shown how trellis shaping can be used to encode
random sequences in such a way that they exhibit these properties. The
last subsection deals with the question how to combine POSH and SOSH
to obtain both, a spectral null at an arbitrary frequency and a considerable
part of the possible shaping gain.
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3.1 Discrete{time sequences and spectral nulls

There seems to be a rather obvious connection between the DC component
of a sequence and its running digital sum (RDS)

RDS(�) =

�X
�=�1

x� : (6)

Using (6) the DC{component can be written as

�x = lim
N!1

1

N

NX
�=�1

x�

= lim
N!1

1

N
RDS(N):

(7)

Hence it is apparently a su�cient (and necessary, cf. [11], [12]) condition
for a DC{free spectrum that the RDS is bounded.

Nevertheless a better criterion can be found. Justesen [11] showed that
�rst order mean power spectra can be described by

Sx(f) =
�2x(1 + �)(1 � cos(2�fT ))

1 + �2 � 2� cos(2�fT )
; (8)

depending solely on a single parameter �, where 1=T is the symbol rate and
�2x is the average power of the output signal. The parameter �, which is the
optimal coe�cient of a linear predictor for �rst order low pass spectra (cf.
[5]) is given by

� = 1�
�2x
2�2z

(9)

where �2z is the average power of the RDS signal z obtained by �ltering the
output signal x with

GRDS(f) =
1

1� e�j2�fT

=
1

1�D
:

(10)

The cut{o�-frequency fc for this spectrum is

fc � T =
1

2�
arccos

�
2�

1 + �2

�

�
1

2�

�2x
2�2z

:

(11)
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The approximation on the right hand side of (11) shows that the width of
the spectral nulls depends on the ratio of the output signal variance to the
variance of the RDS sequence. Thus for a wide spectral null the ratio �2x=�

2
z

is to be maximized. This is done by minimizing the average power of the
RDS �2z . This criterion proves to perform better than the usual minimization
of the absolute RDS.

To obtain a spectral null at a normalized frequency �0 = 2�f0T other
than zero the whole RDS spectrum is shifted by �0. Thus the transformed
RDS sequence

RDS�0(�) =

�X
�=�1

x� e
�j��0 (12)

is obtained by �ltering the output sequence with

GRDS;�0(f) =
1

1� e�j2�(f�f0)T

=
1

1�D � e�j2�f0T
:

(13)

Monti and Pierobon [13] have shown that a necessary and su�cient con-
dition for a second order spectral null (i.e. a fourth order null of the power
density) is that the running sum of the RDS, the running digital sum sum
RDSS,

RDSS(�) =

�X
�=�1

RDS(�); (14)

obtained by �ltering the output sequence with

GRDSS(f) =
1�

1� e�j2�fT
�2

=
1�

1�D
�2 ;

(15)

is constrained to a certain interval. A better criterion for second order
spectral nulls is again to minimize the variance of the RDSS sequence.

Moreover, arbitrary spectra can be achieved, if a suitable (more complex)
�lter is chosen instead of the RDS or RDSS �lter, respectively. The global
optimization rule is again to minimize the power of the �ltered sequence.
However, due to the general structure of such a �lter, a metric function
similar to (16) (below) might involve future symbols. Hence the Viterbi
Algorithm is no longer applicable.
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3.2 Controlling the RDS by Trellis shaping

The idea is to let the shaping decoder control the RDS of the output
sequence. In other words, the decoder has to search the sequence h from CS
that minimizes the average RDS energy �2z and thus maximizes the cut{o�{
frequency fc. For a �rst order spectra the SOSH metric �SOSH for the VA
is formally

�SOSH(�) = ERDS(�)

=

�X
�=�1

RDS2�

=

�X
�=�1

��� �X
�=�1

x�

���2

=

�X
�=�1

��� �X
�=�1

M
�
b� + (m0� � h�)

����2:

(16)

With �SOSH the VA chooses the output sequence with lowest RDS en-
ergy, among all possible output sequences. The distribution of the RDS is
concentrated around zero and hence �SOSH produces a spectral null, at least
for stochastic input sequences. The RDS is constrained to a certain interval
as it is necessary to eliminate the DC{component.

However, for many shaping codes there seem to exist deterministic se-
quences that lead to a steadily growing RDS. But this can easily be avoided
by scrambling the shaping input sequence s. Moreover, the behavior of the
shaping decoder is signi�cantly a�ected by the choice of the mapping func-
tion, which may also be adapted to handle deterministic sequences.

3.3 Combined spectral and distribution shaping

The major shortcoming of the method introduced in the preceding subsec-
tion is a power penalty of (almost) 3 dB due to the constellation expansion.
The basic idea to overcome this problem is a linear combination of the RDS{
metric (16) introduced in the last subsection and the energy{minimizing
metric (5) mentioned in section 2.
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Figure 2. Power spectral density for pure spectral
shaping. (code C4, fc T = 0:135).

Figure 3. Histogram function of the running digital sum (RDS) for pure
spectral shaping (16). (same parameters as in �gure 2).
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� (�) = �POSH(�) + k � �SOSH(�)

=

�X
�=�1

 ���x����2 + k �
��� �X
�=�1

x�

���2
!

=

�X
�=�1

 ���M�b� + (m0� � h�)
����2 + k

��� �X
�=�1

M
�
b� + (m0� � h�)

����2
!

(17)
A VA minimizing this metric operates as follows: As long as the RDS

energy doesn't become too large (depending on k), it selects a sequence h
to minimize the average energy. In general this leads to a steadily growing
RDS, and after some time the decoder starts minimizing the DC{component.
This again causes the path energy to increase, and so on. Compared to an
usual implementation of the VA this special decoder requires an additional
register per path to keep track of the RDS sequence. The multiplication by
k could, for faster operation, be replaced by a shift operation if k is a power
of two. An important detail is that the energy metric must be reset from
time to time to prevent it from over
ow, while the RDS register must not.

The constant k determines the weight of the RDS compared to the path
energy. In other words, a large k forces the decoder to keep the variance of
the RDS low, and the energy of the transmitted sequence increases. This
leads to a loss in average energy compared to the unshaped constellation.
On the other hand, a small k gives priority to the path energy metric pre-
serving most of the shaping gain, while the variance of the RDS increases.
It nevertheless forces a spectral null.

Using the complex RDS (12) as part of the metric (17) produces a spectral
null at any desired frequency, cf. section 4 for examples. Similarly, a second
order spectral null is obtained by controlling the RDSS in the same manner.

4. Numerical results

In this section we concentrate on the e�ect of spectral shaping and the
trade{o� between SOSH and POSH by changing the parameter k in (17).
Since the decoding complexity increases with the number of states of the
shaping code CS we present results for three simple codes C2, C4 and C8

with their generator matrices given in table 1.

Figure 2 shows the e�ect of spectral shaping using C4 and the RDS energy
as metric (cf. (16)). Compared to the unshaped constellation this leads to
an increase in the average power of (i.e. a loss of) approximately �2:17dB.
This is better than the theoretical loss of �3dB since SOSH in
uences also
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the amplitude distribution. The distribution of the RDS (�gure 3) is concen-
trated around zero and Gaussian{like with the probability of growing large
tending to zero.

Table 1. Trellis codes used for simulations

code states generator matrix

C2 2 G2 = [1; D + 1]

C4 4 G4 = [D2 + 1; D2 +D + 1]

C8 8 G8 = [D3 +D + 1; D3 +D2 + 1]

Using the combined metric (17) with k = 11 instead of the pure RDS (16)
realizes a shaping gain of approximately 0.44 dB compared to the unshaped
constellation and preserves the spectral null at zero frequency (�gure 4).
Due to the greater variance of the RDS the cut{o� frequency (half power
frequency) is lower than that in �gure 2.

The trade-o� between shaping gain (a negative shaping gain means a
higher average energy compared to the unshaped constellation) and cut{o�
frequency for the three codes mentioned above is depicted in �gure 5. If the
cut{o� frequency is chosen lower than fc T � 0:05 a positive shaping gain is
attained with codes with four or more states.

Figure 6 shows an example for a spectral zero at f0 T = 0:32. Besides the
complex path metric (12) in the VA this case is similar to a spectral null at
DC.

The e�ect of a second order spectral null obtained by a RDSS{controlled
shaping decoder using a combined metric of RDSS energy and signal energy
is depicted in �gure 7. The shaping gain in this case is about 0 dB.

The spectral shaping scheme can also be expanded to multidimensional
constellations, with 1 bit redundancy per N dimensions. This is demon-
strated in �gure 8. The width of the spectral null decreases with increasing
dimensionality as expected, since an increase in dimension corresponds to a
decrease in redundancy (R = 1=N bit).

In �gure 9 SOSH with the code C8 is compared to the bound for decision
feedback equalization (DFE) given in [1] and also to some multilevel trellis
codes with spectral nulls designed by Calderbank and Mazo [2]. In any case
the combination of SOSH and POSH is at least 1 dB better then DFE and
1.5 to 2 dB better than the trellis codes, which are among the best the author
has found. It also can be seen that the gain compared to DFE increases as
fc becomes larger.
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Figure 4. Power spectral density for the combined metric (17) with
k = 11. (code C4, fc T = 0:028, shaping gain= 0:44dB).

Figure 5. Trade{o� between cut{o� frequency fc and
shaping gain for C2 (�), C4 (�) and C8 (H).
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Figure 6. Spectral null at f0 T = 0:32. (code C4,
fc T = 0:018, shaping gain=0.26dB).

Figure 7. A second order spectral null with a combined RDSS/energy minimizing
metric. (code C4, fc T = 0:019, shaping gain = �0:16 dB).
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Figure 8. Trade{o� between cut{o� frequency fc and dimensions with
shaping gain 0.5 dB (�), 0.0 dB (�) and -0.5 dB (H).

Figure 9. Comparison of SOSH (O) with C8 to a
bound for DFE (� � �� � �� � �) given in [1] and
trellis codes with spectral nulls given in [3].
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5. Conclusion

A method has been introduced to produce a spectral zero at an arbitrary
frequency in the spectrum. The basic idea is to combine Forney's trellis shap-
ing algorithm with a controlled running digital sum. This allows preserving
a signi�cant part of the possible shaping gain while a true spectral null is
obtained, as long as the width of the spectral null is not chosen too large.
The complexity is that of a four to eight state Viterbi algorithm with double
the expense of a minimum distance decoder for the metric calculation.
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