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IDENTIFICATION OF RULES FOR A

RULE{BASED CONTROL OF WALKING

Slavica Joni�c and Dejan Popovi�c

Abstract. In this paper several nonparametric supervised machine learn-
ing (ML) techniques for automatic designing of rules for a rule{based control
(RBC) of functional electrical stimulation (FES) assisted human walking are
described. The application of an arti�cial neural network with radial basis
functions, which works the best for the required pattern matching, is presented.
ML can describe behavior of the system under certain conditions by performing
spatio{temporal mapping of input{output variables and store it in appropriate
form for use in real{time control. This approach is applicable whenever there
is a skilled repetitive action or a process involving human or natural control.
RBC relies on a �nite state model of walking where the process is described
using sensory information and motor activities as state variables. Sensory sig-
nals are used as inputs to the ML. Since the muscles are operating as low{pass
�lters with respect to neural inputs, the prediction of the control signals driv-
ing muscles and the prediction of sensory signals are used as outputs from the
ML. The inputs and outputs for the learning used for this study are obtained
from simulation of a fully customized musculo{skeletal model described in de-
tails elsewhere [28]. The supervised learning task for an ML is to extract all
invariant characteristics from the relationship between the provided inputs and
outputs of the system (examples) and to store them in form of decision tree
which can later produce approximated outputs when only inputs are provided.
Since MLs generally do not have any limitations regarding the number of in-
puts and outputs, this approach is appropriate for multi{input{multi{output
systems. The results provide good basis for design of robust control systems for
FES { assisted walking.

1. Introduction

A review of a series of supervised nonparametric techniques for pattern
matching is presented in this paper including the following: 1) Multilayer
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perceptron (MLP) [30] type of Arti�cial Neural Networks (ANNs); 2) Ra-
dial Basis Function (RBF) type of ANNs [6]; 3) Adaptive Logic Networks
(ALNs) [2,3,17]; 4) Fuzzy Logic [40]; 5) Inductive Learning (IL) [10,25,31];
6) Adaptive{Network{Based Fuzzy Inference system (ANFIS) [11,13]; and
7) combination of RBF network and IL [12,24]. The task in all cases was the
same: determination of a connectivism between the sensory information de-
scribing walking of a human and activities of muscles that must be required
to generate joint torques needed for walking. This connectivism can be used
as the essence of a knowledge base of a rule{based controller.

Existing controllers for walking frequently use analytical, dynamic model
of the human body. Dynamic analysis relies on a detailed and correct model,
all parameters of the model must be known with a certain accuracy, and the
trajectory has to be known. The body is usually presented as a system
of rigid segments connected with rotational joints and powered by a set of
joint actuators [39]. However, even the most complicated model proposed is
distinct from the reality with respect to the number of degrees of freedom,
variability of inertial properties of the system and speci�c nonlinear e�ects
imposed by muscles and tendons. Simulated actuators typically implement
visco{elastic, Hill{based model taking into account speci�c characteristics
of human musculo{skeletal plant [37]. Most models use a simpli�ed model
of the foot, including the toe phalange at best. Flexibility of the foot itself,
compression of the soft tissue during the heel impact and many other im-
portant events are not considered. There is no model for locomotion that
takes into account the characteristics of the segmented spinal column, upper
body, neck and the head when analyzing locomotion. Designing the control
system for functional electrical stimulation (FES) assisted locomotion of hu-
mans with spinal cord injury (SCI) requires taking into account the changes
caused by the injury.

Since there are many possible solutions when calculating of control sig-
nals driving muscles for the known desired joints trajectory, a criterion for
selection of a single solution has to be adopted. In engineering �eld, the
appropriate solution is selected by using criterion functions, or performance
index of the system. This function may include total energy used, time
required for an operation, power and torque requirements, changes in the
acceleration of the system, forces acting at speci�c parts of the body, etc.
In most cases the term optimal solution' is used, but actually this is usu-
ally a preferred solution. In biological organisms the selection of preferred
solution is goal dependent and it comes as a result of self-organization and
learning (e.g., when walking over ice the balance and friction forces are opti-
mized to decrease the chance of falling; for walking while carrying cup with
a hot co�ee that should not spill, jerks of the upper body are minimized; for



S. Joni�c and D. Popovi�c: Identi�cation of rules for a ... 3

marathon running the energy cost per distance is minimized, etc.). With-
out optimization criterion all solutions are equally possible and there is no
unique solution to the problem.

An alternative nonparametric method suggested in literature [34] is to
use pattern matching of sensory and motor states, de�ned as inputs and
outputs. The approach is similar to, although it was not inuenced by, the
hierarchical organization of biological motor control in humans and animals
[34]. A nonparametric model of process uses a �nite state model and a
rule{based control (RBC) [33,34]. The states and rules can be either: 1)
"hand{crafted"; or 2) automatically generated using arti�cial intelligence
(AI) tools.

In the "hand{crafting" approach states and control rules are de�ned
heuristically. Such a system is implemented to real FES{assisted locomo-
tion application and the quality of the resulting gait is assessed, necessary
adjustments are completed and the process is repeated again until a sat-
isfactory gait is achieved [15]. This "trial and error" method is very time
consuming and requires the subject's presence at every iterative cycle. The
most important disadvantage of this method is that the performance of the
resulting control system depends on an experts abilities to express acquired
knowledge explicitly in states and rules.

The transfer of human knowledge about locomotion to the computer
knowledge base relies basically on identi�cation and representation of in-
variant features of functional movements. While the method works satis-
factorily in modeling of the gait of non{impaired persons, its application to
handicapped persons is not as successful because each case of sensory{motor
de�ciency is speci�c in many ways. This may be the reason that, although
expert systems based on the transfer of human knowledge to the machine at
the conscious level are in wide use today, machine control by skill{based AI
systems is still in the stage of early development. The most serious prob-
lem on the way to faster development of skill{based control system is the
description of human skill in machine comprehensible form. By de�nition,
automatic features of motor skills are expressed as spatio{temporal events.
Consequently, capturing of such knowledge requires a new type of identi�-
cation methods which rely to a large extent on external manifestations of
neuromotor control mechanisms.

A complex movement can be improved with training, thus the acquisi-
tion of skills can be considered as an optimization process taking place at
a number of levels in the central nervous system. A skilled subject or ther-
apist manually controlling FES { assisted locomotion can develop a set of
motor control rules that are near optimal. If these rules can be copied and
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stored, they can be used to form a controller to reproduce the near optimal
movements. This represents a basis for another approach to control rule
de�nition: transfer of the knowledge, stored in form of a skill, from a skilled
subject or therapist to a computer, using automatic process that employs
machine learning (ML) algorithms.

Two methods are in common use to determine the input{output mapping.
Induction relies entirely on the ability to transfer human expertise into form
understood by a machine and results in expert systems. This method has
been applied extensively for design of arti�cial limbs [1,4,27]. The expertise
required for designing a knowledge{base (expert system) for real{time con-
trol is gained by analyzing the sensory patterns acquired while able{bodied
subjects, or amputees walked at di�erent speeds and under various condi-
tions. The sensory patterns are coded (e.g., single threshold, multi threshold,
timing, local vs. absolute minimum or maximum, etc.), and the rules de�n-
ing the relationship between sensory patterns and necessary activities are
built into the controller.

The fast development of arti�cial and computational intelligence tech-
niques, such as arti�cial neural networks, fuzzy logic and genetic algorithms,
brings new approach to the control system design problem formulation and
solution. Following the early work of Michie and Chambers [22] on an al-
gorithm known as "Boxes" implemented in the "pole balancing" paradigm,
Kirkwood et al. [14] proposed the use of inductive learning technique for
the upper level controller for FES{aided walking of subjects with incom-
plete SCI. They evaluated the use of induction and traditional transducers
for automatic generation of control rules by cloning the skill of the subject
with SCI in manually controlling a simple two{channel{per{leg FES{system
for paraplegic walking, such as one described by Kralj and Bajd [18]. In a
continuation of this work, Heller [10] evaluated the use of inductive learning
technique in controlling the swing-through walking of paraplegic subjects.
Veltink et al. [35] have used a backpropagation multilayer perceptron net-
work for reconstructing muscle activation patterns in the walking cycle on
the basis of signals recorded from external sensors (goniometers and foot{
switches).

The most important question of a generalization fromML technique train-
ing to a real{time control application remained unanswered in most of the
works described above. After preliminary results demonstrated possibility
of using neural networks for designing control rules for FES{assisted walking
of subjects with incomplete SCI [16,25], a similar approach was adopted as
the basis for this study.

The muscles are operating as low-pass �lters with respect to neural inputs.
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Dynamics of muscles can be characterized by rise time of approximately 50
to 100 ms, depending on the muscle type. Muscle activity is delayed after
the neural signal for about 30 to 50 ms. Those dynamic features of a muscu-
loskeletal system impose that a command signal precede the required muscle
activity when a real{time control is to be implemented. The recognized sen-
sory combination which precedes the muscle activity allows su�cient time
for turning on the stimulation, and for the muscle to contract. A RBF net-
work is applied in this study as an example of predicting of muscle activation
pattern and joint angle from preceding sensory data.

2. Arti�cial neural networks for determination of rules

ANN elements are inspired by biological nervous systems. The ANN is
composed of many simple elements working in parallel, and the network
function is determined largely by the connections between them. During
the learning process to perform a particular function the values of connec-
tions between elements are adjusted. Complex functions in various �elds
including identi�cation, control system, pattern recognition, and vision can
be performed by an ANN. Neural net classi�ers are nonparametric and make
weak assumptions about shapes of underlying distributions.

In the areas of biomedical engineering, the feedforward networks, such
as the MLP, ALN and RBF networks, are often used. The function of a
feed{forward network with single output can be described as the weighted
combination of basis functions:

f = �0 +
NX
q=1

�q�q(�)

where � is the input vector and �q(�) represents the q-th basis function
connected to the output by weight �q (�0 is the bias of output node).

2.1 Multilayer perceptron

Investigations of the MLPs have been intensi�ed since the formulation of
the backpropagation (BP) learning algorithm [30]. It was found that this
algorithm represents a simple and powerful tool for adjusting the connec-
tions between elements of the networks with arbitrarily complex architec-
ture. Typically MLP consists of several layers of nonlinear processing nodes
called hidden layers with a linear output layer. Processing node takes as in-
put only the outputs of the previous layer, which are combined as a weighted
sum and then passed through a nonlinear processing function known as the
activation function. This activation function is typically sigmoidal in shape.
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A MLP with three hidden layers can form arbitrarily complex decision re-
gions and can separate the classes that are meshed together. It can form
regions as complex as those formed using mixture distributions and nearest
neighbor classi�ers [20]. A MLP usually used has a single linear output node
and single hidden layer with sigmoidal activation functions. Following the
feed-forward network structure, the basis functions for this MLP could be
written in terms of activation function  (�):

�q(�) =  (dTq � + �q)

where � is the input vector, dq is the input weight vector and �q is the scalar
bias for the q-th node in the hidden layer. All the weights and biases of the
network are called network parameters.

The BP learning algorithm is a generalization of a gradient descent algo-
rithm. It uses a gradient search technique to minimize a cost function equal
to the sum square di�erence between desired and estimated net outputs.
Derivatives of error (called delta vectors) are calculating for the network's
output layer, and then backpropagated through the network until delta vec-
tors are available for each hidden layer of the network. The BP algorithm
may lead to a local, rather than a global error minimum. If the local mini-
mum found is not satisfactory, use of several di�erent sets of initial conditions
or a network with more neurons can tried.

Simple BP algorithm is very slow because it requires small learning rates
for stable learning. There are ways to improve the speed and general per-
formance of BP algorithm. It can be improved in two di�erent ways: by
heuristics and by using more powerful methods of optimization. Speed and
reliability of BP can be increased by techniques called momentum and adap-
tive learning rates. The momentum technique helps the network to get out,
if stacked in shallow minimum. By the use of adaptive learning rates it
is possible to decrease the learning time. By using Levenberg{Marquardt
optimization the learning time can be shortened. Its update rule is:

�! =
�
JTJ + �I

�
�1

JT e

where �! is column matrix whose number of rows matches the number
of network parameters, J is the Jacobian matrix of derivatives of network
function error, that is di�erence between desired and estimated net outputs,
for each learning pattern to each network parameters. The number of rows
in J matches the number of learning patterns, and the number of columns
matches the number of network parameters. e is a column matrix of errors
for each learning pattern. The number of rows in e matches the number
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of learning patterns. I is identity matrix whose number of rows as well as
columns matches the number of network parameters. � is scalar. If � is
very large, the above expression approximates gradient descent, while if � is
small this expression becomes the Gauss-Newton method. The coe�cient �
is changed in such a way to join good features of both algorithms: gradient
descent algorithm (it does not request that initial values of parameters are
good chosen), and Gauss{Newton algorithm (it has quadratic convergence
near an error minima). As long as the error gets smaller, � is made bigger,
but, once the error starts increasing, � is getting smaller. The Levenberg{
Marquardt is much faster than the gradient descent algorithm, on which
standard BP algorithm is based. However, it requires more memory than
the gradient descent algorithm.

2.2 Radial basis function type of arti�cial neural network

RBF network [6,24] usually used has a single output node and single
hidden layer which contains as many neurons as are required to �t the func-
tion within the speci�cations of error goal. The transformation from the
input space to the hidden{unit space is nonlinear, whereas the transforma-
tion from the hidden{unit space to the output space is linear. Following the
feed{forward network structure, the basis functions are given in the form:

�q(�) = �(k � � cq k)

where � is the input vector, and �(�) is activation function (for RBF network
known as radial basis function). Theoretical investigations and practical re-
sults show that the type of nonlinearity �(�) is not crucial to the performance
of RBF network [29], and it is usually taken to be bell{shaped function. The
k � k denotes a norm that is usually taken to be Euclidean. The cq are known
as vectors of radial basis function centers.

A common learning algorithm for RBF networks is based on �rst choosing
randomly some data points as radial basis function centers and then using
singular value decomposition to solve for the weights of the network. An
arbitrary selection of centers may not satisfy the requirement that centers
should suitably sample the input domain. Furthermore, in order to achieve
a given performance, an unnecessarily large RBF network may be required.
Since a performance of an RBF network critically depends upon the cho-
sen centers, an alternative learning procedure based on the orthogonal least
squares (OLS) learning algorithm [6] is often used. By providing a set of
the inputs and corresponding outputs, the values of weights �q, bias �0, and
radial basis function centers can be determined using OLS algorithm in one
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pass of the learning data so that a network of an adequate size can be con-
structed.

When an input vector � is presented to such a network, each neuron in the
hidden layer will output a value according to how close the input vector is
to the centers vector of each neuron. The result is that neurons with centers
vector very di�erent from the input vector will have outputs near zero. These
small outputs will have a negligible e�ect on the linear output neurons. In
contrast, any neuron whose centers vector is very close to the input vector
will output a value near one. If neuron has an output of one, its output
weights in the second layer pass their values to the neuron in the second
layer. The width of an area in the input space to which each radial basis
neuron responds can be set by de�ning a spread constant for each neuron.
This constant should be big enough to enable neurons to respond strongly to
overlapping regions of the input space. The same spread constant is usually
selected for each neuron.

The RBF network has some advantages over the MLP: 1) RBF network
with supervised learning of cluster centers as well as network weights has
characteristic fast training; often it can be designed in a fraction of the time
it takes to train MLP with BP learning algorithm, even RBF network may
require more nodes than MLP; 2) RBF network using this learning algorithm
is able to exceed the generalization performance of MLP with BP algorithm
substantially [8], and 3) the spread constant is the only element which has
to be selected for RBF network with the described learning algorithm.

2.3 Adaptive logic network

An ALN can be considered a special type of the feedforward MLP in
which the signals in the network are restricted to be boolean (binary) after
a layer of processing units that act on whatever other types of signals are
present (reals etc.) to produce boolean values. The two versions of learning
algorithms for ALNs were evaluated and implemented by Kostov [17].

Atree versions 2.7 and earlier [2] deal with binary numbers and to deal
with continuous quantities are used �xed operators such as threshold units
to encode real numbers as bit strings. Previously Kostov [16] used "random
walk encoding", but then switched to a so called "thermometer code" which
was even less sensitive to the input noise. It is a type of linear encoding
where the number of bits corresponds to the number of encoding threshold
levels and all bits under the encoding level closest to the real number to
be encoded are ones while the other bits are zeroes. To obtain real results
the output vector has to be decoded, which is the inverse process of the
encoding. The nodes of the ALN tree are two types: adaptive elements and
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leaves. Each adaptive element is a two{input logic gate, which can be any
one of the following four boolean functions: AND, OR, LEFT and RIGHT,
i.e., g(x; y) = xy; x + y; x; y respectively [2]. Leaves are the nodes of the
�rst layer of an ALN tree used to connect binary inputs from the encoder
to the tree. The leaves of the tree are connected to input variables either in
a one-to one fashion (the disjoint case) or with a multiplicity of connections
going to the same variable of the binary tree and its inverse (the nondisjoint
case). The adaptation procedure involved selecting the node functions of an
ALN based on sequences of presentations of inputs and outputs. The critical
parameter of an adaptive learning algorithm is training time which may
become very long if the encoding and training parameters are not properly
chosen.

In the Atree ver. 3.0 [3], the logic trees containing AND and OR operators
have been furnished with input operators in the form of linear threshold
elements (LTEs). The logic gates (AND and OR) may have an arbitrary
number of logical inputs, and produce a logical output. The LTE is the basic
element of approximation and it is very similar to the Perceptron developed
in the 1950's. The LTE has a logical output value of one for input points
(x1; x2; : : : ; xn) that satisfy the inequality: w0+w1x1+w2x2+: : :+wnxn > 0
and a logical value of zero otherwise. The LTE �ts the data presented to
it during training by performing a least{squared error �t, similar to linear
regression. The direct consequence of new ALN design is possibility to apply
ALNs directly to real values and thus de�ne piecewise linear approximations
of functions. This approach is not restricted to approximating functions, but
can approximate relationships of more general types represented as sets of
data points, which is important for pattern recognition applications.

The fundamental di�erence between Atree 2.7 and 3.0 versions is the way
ALNs are used to solve problems. Instead of computing an output as a
function of some inputs, ALNs in Atree 3.0 are used to represent relations
among inputs. The Atree 2.7 "output", in the functional sense of the word,
now becomes just another input to the ALN, which computes whether or
not all of its inputs are related in a certain way. Therefore, the inputs to
the LTEs are the inputs and outputs of the problem.

If ALN with an Atree 3.0 algorithm and MLP with BP algorithm are
compared, it becomes obvious that the LTE (called hard{limiter) replaces
the activation function in the MLP. The advantage of using a hard{limiter is
in speed of evaluation: a comparison operation is much faster than comput-
ing e.g. sigmoid or even doing a table lookup to �nd a precalculated sigmoid
value. The not so obvious advantage is that not all inputs of a logic gate
have to be evaluated when using a hard{limiter. As soon as a zero input to
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an AND gate is found, we know the AND gate output is zero. As soon as
a one input to an OR gate is found, we know that the OR gate output is
one. The e�ect of using hard{limiters is that the entire ALN does not need
to be evaluated to determine the output of the tree. This contrasts with
BP algorithm, where every input of every layer must be evaluated before
calculating the output.

3. Rule{based learning techniques

Learning methods like IL and fuzzy logic generate set of "if{then{else"
decision rules which are both explicit and comprehensible, contrary to an
ANN which determines rules implicit within its structure and not easily
comprehensible.

3.1 Fuzzy logic

Fuzzy sets are a generalization of conventional set theory. They were
introduced by Zadeh [40] as a mathematical way to represent vagueness in
everyday life. A formal de�nition of fuzzy sets that has been presented by
many researchers is following: a fuzzy set A is a subset of the universe of
discourse X that admits partial membership. The fuzzy set A is de�ned
as the ordered pair A = fx;mA (x)g, where x 2 X and 0 � mA (x) � 1.
The membership function mA(x) describes the degree to which the object
x belongs to the set A, where mA(x) = 0 represents no membership, and
mA(x) = 1 represents full membership.

One of the biggest di�erences between conventional (crisp) and fuzzy sets
is that every crisp set always has unique membership function, whereas every
fuzzy set has an in�nite number of membership functions that may represent
it. This is at once both a weakness and a strength; uniqueness is sacri�ced,
but this gives a concomitant gain in terms of exibility, enabling fuzzy mod-
els to be "adjusted" for maximum utility in a given situation. One of the
questions, that is still asked most often, concerns the relationship of fuzziness
to probability. The fuzzy models and the statistical models possess di�erent
kinds of information: 1) fuzzy memberships, which represent similarities of
objects to imprecisely de�ned properties, and 2) probabilities, which con-
vey information about relative frequencies. Moreover, interpretations about
and decisions based on these values also depend on the actual numerical
magnitudes assigned to particular objects and events.

The typical steps of a "fuzzy reasoning" consist of: 1) Fuzzi�cation: com-
parison of the input variables with the membership functions of the premise
parts (the if{part of the rule is called the antecedent or premise) in order
to obtain the membership values between 0 and 1, 2) Weighing: applying



S. Joni�c and D. Popovi�c: Identi�cation of rules for a ... 11

speci�c fuzzy logic operators (e.g., "AND" operator { minimum, "OR" op-
erator { maximum etc.) on the membership values of the premise parts to
get a single number between 0 and 1, that is the �ring strength of each
rule, 3) Generation: creation of the consequent (the then{part of the rule is
called the consequent or conclusion) relative to each rule, 4) Defuzzi�cation:
aggregation of the consequent to produce the output.

There are several kinds of fuzzy rules used to construct fuzzy models which
can be classi�ed into the following three types according to their consequent
form [19]:

1) fuzzy rules with a crisply de�ned constant in the consequent:

Ri: IF x1 is Ai1 and : : : and xm is Aim

THEN y is ci

2) fuzzy rules with linear combination the system's input variables in the
consequent:

Ri: IF x1 is Ai1 and : : : and xm is Aim

THEN y is gi(x1; : : : ; xm) = b0 + b1x1 + : : : + bmxm

3) fuzzy rules with fuzzy set in the consequent:

Ri: IF x1 is Ai1 and : : : and xm is Aim

THEN y is Bi

where Ri is the i-th rule of the fuzzy system, xj (j = 1; 2; : : : ;m) are the
inputs to the fuzzy system, y is the output from the fuzzy system. The
linguistic terms Aij and Bi are fuzzy sets, ci and bj denote crisply constants.

The so{called zero{order Sugeno, or Takagi{Sugeno{Kang fuzzy model
[32] has rules of the �rst type, whereas the �rst{order Sugeno fuzzy model
has rules of the second type. The easiest way to visualize the �rst-order
Sugeno fuzzy model is to think of each rule as de�ning the location of a
"moving singleton" (single spike from the consequent) depending on what
the input is. Sugeno models are similar to the Mamdani model [21] which has
rules of the third type, and which is more intuitive, but computationally less
e�cient. Fuzzi�cation and weighing, are exactly the same, but generation
and defuzzi�cation are di�erent [19]. For type of fuzzy rules used in Mamdani
model various methods are available for defuzzi�cation: the centroid of area,
bisector of area, middle of maximum, largest of maximum etc. [9], but all
of these methods are based on the calculation of the two{dimensional{shape
surface, that is on the integration. The Sugeno{style enhances the e�ciency
of the defuzzi�cation process because it greatly simpli�es the computation,
that is, it has to �nd just the weighted average of a few data points. The
implication method (generation) is simply multiplication, and aggregation
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operator just includes all of the singletons. For the �rst{order Sugeno fuzzy
model, usually used, defuzzi�ed value y0 is:

y0 =

P
i

gi (a1; a2; : : : ; am)
Q
j

�Aij
(aj)P

i

Q
j

�Aij
(aj)

where �Aij
(aj) is the membership degree of input aj (j = 1; 2; : : : ;m) to

antecedent linguistic term Aij for the i{th rule of the fuzzy system.

Membership functions are subjective and context{dependent, so there is
no general method to determine them. Currently, when fuzzy set theory is
applied in control systems, the system designers are given enough freedom to
choose membership functions and operators, usually in a trial{and error way.
After a hand{tuning process, the system can function e�ectively. However,
the same methodology is hardly applicable when the system is a general
purpose one, or when the context changes dynamically. This suggests an
explanation for why the most successful applications of fuzzy logic happen
in control systems, rather than in natural language processing, knowledge
base management, etc.

The approach usually used to extract the rules for �rst{order Sugeno
type of fuzzy inference system (FIS) is based on replacing identi�cation of
membership functions of input variables with identi�cation of the centers of
cluster{like regions. Fuzzy c{means technique introduced by Bezdek [5] as
an improvement on earlier data clustering methods requires that number of
clusters is known. If there is not a clear idea how many clusters there should
be for a given set of data, it can be used subtractive clustering method [7]
for estimating the number of clusters and their centers in a set of data. It is
an extension of the Mountain clustering method proposed by Yager [38]. It
assumes each data point is a potential cluster center and calculates a measure
of the potential for each data point based on the density of surrounding data
points. The algorithm selects the data point with the highest potential as the
�rst cluster center and then destroys the potential of data points near the �rst
cluster center. The algorithm then selects the data point with the highest
remaining potential as the next cluster center and destroys the potential
of data points near this new cluster center. This process of acquiring a
new cluster center and destroying the potential of surrounding data points
repeats until the potential of all data points falls bellow a threshold. The
range of inuence of a cluster center in each of the data dimensions is called
cluster radius. A small cluster radius will lead to �nding many small clusters
in the data (resulting in many rules) and vice versa. The cluster information
obtained by this method are used to determining the number of rules and
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antecedent membership functions, that is to identifying FIS. Then, the linear
least{squares estimation is using to determine consequent for each rule. The
result is fuzzy rule base. However, for di�erent initial values, this method
may give di�erent results, because the identi�cation algorithm depends on
an optimization procedure.

3.2 Entropy minimization type of inductive learning technique

An IL method described in [25] is based on an algorithm called "hierar-
chical mutual information classi�er" [31]. A program Empiric described in
[10] implements this algorithm. This algorithm produces a decision tree by
maximizing the average mutual information gain at each partitioning step.
It uses Shannon's entropy as a measure of information.

Mutual information is a measure of the amount of information that one
random variable contains about another random variable. It is a reduction
of the uncertainty of one random variable due to the knowledge of the other.
Consider two random variables X and Y with a joint probability density
function p(x; y) and marginal probability density functions p(x) and p(y).
Mutual information I(X;Y ) is the relative entropy between the joint distri-
bution and the product distribution p(x)p(y), i.e.,

I(X;Y ) =
X
x

X
y

p(x; y) log
2

p(x; y)

p(x)p(y)

The mutual information can also be written as:

I(X;Y ) = S(X) � S(X=Y )

where S(X) is Shannon's entropy and it is de�ned as:

S(X) = �
X
x

p(x) log
2
p(x)

and S(X=Y ) is conditional entropy and it is de�ned as:

S(X=Y ) = �
X
x

X
y

p(x; y) log
2
p(x=y)

where p(x=y) is conditional probability density function.

An e�ective method of integrating results of a mutual information algo-
rithm into a production rule formalism, following the original work of Pitas
[26] and Watanabe [36] is shown in [25]. While generating the decision tree,
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the algorithm performs a hierarchical partitioning of the domain multidi-
mensional space. Each new node of the decision tree contains a rule based
on a threshold of one of the input signals. Each new rule further subdi-
vides the example set. The learning is �nished when each terminal node
contains members of only one class. An excellent feature of this algorithm is
that it determines threshold automatically based on the minimum entropy
[25,26]. This minimum entropy method is equivalent to determination of the
maximum probability of recognizing a desired event (output) based on the
information from an input.

4. Combination of neural networks and
rule{based learning techniques

The advantage of a rule{based learning method (e.g., IL method and fuzzy
logic) compared to an ANN (e.g., MLP, ALN, RBF network) is that the rules
determined are both explicit and comprehensible, whilst the rules used by the
ANN are implicit within its structure and not easily comprehensible. There
are methods which extract approximate classi�cation rules from a trained
ANN, and they help evaluating the learned knowledge [23]. Furthermore,
ANNs are computationally intensive. In view of the versatility of ANN and
rule{based learning method, their combination can be expected to exhibit
many advantageous features like: 1) the parameters of the system have clear
physical meanings, which they do not have in general ANN, 2) a network
structure facilitates the computation of the gradient for parameters of the
system, and 3) human linguistic descriptions or prior expert knowledge can
be directly incorporated, for example, into fuzzy neural network structure.
On the other hand, the disadvantage is that the network structure requires
a large number of term nodes and there is no e�cient process for reducing
the complexity of combined neural network with rule{based method.

ANFIS is an example of often used combination of FIS and ANN [11,13].
Training procedure usually has two steps. In the �rst step is used subtractive
clustering method for initial identi�cation of a �rst{order Sugeno{type FIS
[7]. In the second step is used an adaptive{network with BP and least squares
algorithms for tuning of initial identi�ed linear and nonlinear parameters
of FIS respectively [11]. Adaptive{network corrects the rules determined
by initial identi�cation of FIS. The result is FIS which corresponds to the
minimum training error.

An example where combination of the minimum entropy IL and the RBF
network is readily used is the estimation of the muscle activation. It is
presented in [12]. The muscle timing is estimated using minimum entropy
IL, and the level of muscle activation is estimated using RBF network with
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OLS learning algorithm [12]. The RBF network estimates the level very well
because it gives a "continuous" output. However, it does not work so well
for the muscle timing estimation. Hence, the rules designed using IL method
correct the muscle timing estimated using RBF network. The parameters of
RBF network were calculated based only on data from the input and output
training sets which falls in the interval in which a muscle was estimated to
be active using IL method.

5. RBF network for real{time control of
walking { an example

5.1 Task formulation and preparation of data

In this section an example of usage of ML for design of the rules for a
controller of the FES-assisted human walking is presented. The task was
to predict: 1) the activation pattern of a muscle; and 2) the joint angle
from preceding sensory data. The term muscle relates to the simpli�cation
introduced that all the muscles contributing to the activity at a joint are rep-
resented with a single muscle. A RBF network with OLS training algorithm
was selected for the pattern matching because of its characteristics: 1) fast
training; 2) good generalization; and 3) easy application because it requires
only the spread constant to be assumed, while everything else is automatic.

The data used for training and testing of the network was prepared using
simulation of walking of a fully customized model of a human body assisted
with FES [28]. The sampling rate for all data was 100 Hz. The inputs for
the network were following sensory data: 1) knee joint angle; 2) horizontal
ground reaction force; and 3) vertical ground reaction force (Fig. 1). The
desired outputs from the network were: 1) knee exor muscle activity (Fig.
1); and 2) knee joint angle, predicted from the network inputs by 60 ms.

In the training phase the number of the nodes and the parameters of the
network were tuned on the basis of the provided inputs and desired outputs of
the system, called the examples in the supervised learning. For the testing
of the obtained network only inputs were provided, and the goal was to
generate outputs. The quality of matching was evaluated by comparing the
desired outputs with the predicted ones. The testing was done in both cases:
1) using data used for the training; and 2) using data that was not used for
training, being di�erent in their amplitude, frequency content and timing.



16 Facta Universitatis ser.: Elect. and Energ. vol. 11, No.1 (1998)

Figure 1. Model of a human body showing the knee joint angle,
ground reaction forces, and the knee exor muscle.
The model is used for calculating data that is used
as inputs and outputs for the pattern matching.

The example shown includes twelve consecutive strides because of the
simplicity, even though we trained and tested the network using longer se-
quence of level walking with up to 50 successive strides and climbing up
and down the stairs, and the results obtained are very similar to the one
presented here.

The set of inputs and outputs used for the training and the testing is
shown in Fig. 2. The set of inputs and desired outputs representing a
similar walking was used for the testing, and not for the training (Fig. 3).
Note the di�erence in the amplitude of the joint angles, ground reaction
forces and activations of the knee exor muscle. The top panels in Figs. 2
and 3 show the knee joint angle, the middle panels show the ground reaction
forces, while the bottom panels show the activity of the knee exor muscle.
The sequence presents a series of strides that lasted for 15 seconds.
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Figure 2. Data obtained from the simulation and used as input
and desired output sets for training and testing of
RBF network. The top panel shows the angle at the knee
joint, the middle panel shows the ground reaction forces,
and the bottom panel shows the activation patterns of
the knee exor muscle. The activation is normalized at 1.

The correlation can be graphically observed in Figs. 4 and 5, but the
cross{correlation between the desired outputs and the predicted outputs by
the network was selected as a measure of the generalization:

cor =

rP
i=1

s(i)sdes(i)s
rP
i=1

s2(i)

s
rP
i=1

s2des(i)

where sdes(i) and s(i) are the i-th sample of the desired output and the
network generated output, and r is the number of samples.
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Figure 3. Data obtained from the simulation and used as input
and desired output sets for testing of RBF network,
and not used for the training. For details see Fig. 2.

5.2 Results of pattern matching by RBF network

Fig. 4 shows the results of the RBF network tested on a set of inputs
that was previously used for the training. The desired (full line) and net-
work generated (dashed line) outputs are superimposed in order to show the
quality of mapping. It can be observed that the network results are some-
what delayed and do not reach the maximum of the signals which have to
be matched. The top panel shows the muscle activation, while the bottom
panel shows the joint angle.

Fig. 5 shows the results of the network tested using a set of inputs that
was not used for the training. The desired (full line) and network generated
(dashed line) outputs are superimposed to show the correlation. The top
panel shows the muscle activation, while the bottom panel shows the joint
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angle. The agreement of the network generated outputs and the desired
outputs is better for the joint angles which can be explained by noticing
that the muscle activations are much less repetitive from stride to stride
compared to the joint angles. The inputs for these pattern matchings were
the knee joint angle and the ground reaction forces delayed for the 60 ms
from the outputs.

Figure 4. Results of the RBF network when using the data
previously used for the training. The top panel
shows the network generated (dashed line) and
desired (full line) knee exor muscle activations.
The bottom panel shows the network generated
(dashed line) and the desired (full line) knee
joint angles. The inputs for the pattern matchings
were the knee joint angle and the ground reaction
forces delayed for the 60 ms from the outputs.

Note that the agreement in patterns and the timing between the joint
angle is good, but the network outputs are not crossing about 0.9 radian,
while the actual joint angles reach 1.2 radian. This discrepancy can be
explained by analyzing the training set. The network was never "shown" a
joint angle bigger than 0.9; hence, there is no reason that the bigger output
is predicted. The networks are not meant to generalize if the data does not
belong to the group that was used for the training. The results obtained are
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acceptable for the purpose of this study, because there is no need to match
the joint angle and activation of a muscle ideally. This statement follows the
gait analysis which clearly shows that the variability form stride to stride is
the normal behavior of walking.

Figure 5. Results of the RBF network applied to the
set of inputs that was not previously used
for the training. For details see Fig. 4.

The spread constant for the RBF network matching muscle activity was
selected at 112. The spread constant for the RBF network matching the
joint angle was selected at 28. The spread constant was selected to get as
good as possible pattern matching based on the input and desired output
data not used for the training. This choice is based on trial and error gained
experience. In both cases the obtained network had 792 nodes in the hidden
layer, and the number of training epochs was one. The cross{correlation
between the desired and network generated muscle activity using the data
used previously for the training was 0.90, and it dropped down to 0.75 when
applied to the set of data which was not used for the training. The cross{
correlation between the desired and the network generated knee joint angle
using the data previously used for the training was 0.99, and dropped down
to 0.98 when applied to data previously not shown to the network.
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6. Discussion

In this paper several supervised nonparametric techniques for pattern
matching are described. These are: MLP, RBF network, ALN, Fuzzy Logic,
IL, ANFIS, as well as the combination of RBF network and IL. An example
of usage of RBF network with OLS learning algorithm is presented. This
ML technique was selected because of its characteristics: fast training, and
ability for good generalization. The training procedure is not too compli-
cated because it requires that only the spread constant is chosen, while the
remaining elements in the network are determined automatically.

By this type of ANN is obtained a large number of the rules which are not
explicit and not easily comprehensible. However, there are methods which
extract approximate classi�cation rules from a trained ANN, and they help
evaluating the learned knowledge [23].

The data for pattern matching was prepared using the results of the sim-
ulation of a human walking with an FES system. The goal was to predict:
1) an activation pattern of muscle (command signal), and 2) a joint angle
(feedback signal) from preceding sensory data. This example is presented
to show ability of the used ML technique to determine the connectivism,
that is if-then rules which will be implemented in a controller for walking.
There is no need of getting perfect mapping since the results obtained will
be used only as a �rst approximation during an interactive and iterative pro-
cedure [34]. The simulation used to get the inputs and outputs for pattern
matching provides only one plausible sensory-motor map, and its accuracy
is questionable because it utilizes a very simpli�ed biomechanical model of a
human body. Therefore, the obtained map of desired signals only represents
a starting point for �tting an FES controller to a person with disability.
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