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Abstract. In this paper a generalization of direct design of di�erent types of
recursive digital �lters is proposed. This method allows that the coe�cients of
the polynomials containing the poles of transfer function to be determined in
closed form, directly in digital domain. These �lters can not be obtained using
transforms from continuous domain. Cuto� slopes of these �lters has been also
investigated.

1. Introduction

Digital �lters are playing an increasing role in modern telecommunica-
tion systems. Recursive digital �lters are mostly used in design of selective
amplitude characteristics. Transfer function of these �lters can be obtained
by indirect and direct methods. Indirect methods are well known and de-
scribed in [1,2,3,4]. Using indirect methods one can not control the phase
characteristics and it is impossible to design all pole digital �lters.

Aronhime and Budak are �rst described all pole transitional Butterworth{
Chebyshev analogous �lters where characteristic function is equal to multiple
of Butterworth and Chebyshev �rst kind function [5]. These �lters don't
have equiripple loss characteristics in passband.

On the other hand, direct design of Butterworth and Chebyshev digital
�lters is �rst proposed by Rader and Gold [6]. They showed that character-
istic function of these �lters is trigonometric polynomial in !T=2. They also
concluded that the square of the amplitude characteristics must be rational
function in z where denominator is a image mirror polynomial. Choosing
di�erent trigonometric functions di�erent types of �lters can be obtained.
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However, this method is formal because they solved problem of synthesis
in s domain and than they returned in z domain. For example using this
way one can not �nd poles of Chebyshev digital �lters without knowledge
position of poles of corresponding analogous Chebyshev �lters.

In this paper the direct design of selective recursive all pole digital �l-
ters is proposed, i.e. design of di�erent types of transitional Butterworth{
Chebyshev digital �lters.

Methods described in this paper enable that the coe�cients of polynomials
containing poles of transfer function to be obtained in closed form. These
�lters can not be obtain using transforms from continuous domain. Cuto�
slopes of these �lters has been also obtained in closed form.

This paper summarized results which have been published before. More
about these algorithms for design of polynomial low{pass transitional Butt-
erworth{Chebyshev �lters can be found in [7,8,9]. More about the procedure
for design of band{stop �lters can be found in [13].

2. Approximation

Such a square amplitude characteristic of these �lters can be written in
the next form

H(ej!T ) =
1

1 + "2K2(x; y)
(1)

where K(x; y) is characteristic function given with

K(x; y) = xkylCn�k(x)Cm�l(y) (2)

where x and y are frequency variables suitable for low{pass and high{pass
�ltering respectively, n+m is the order of �lter, while k and l are orders of
the Butterworths polynomials and " is a parameter related to the passband
ripple speci�cation Amax in decibels de�ned by

" =
q
(100:1Amax � 1:

Rader and Gold showed in their paper [6] that frequency variables are
trigonometric functions in !T=2. They also showed that there are three
trigonometric functions suitable for low{pass and three trigonometric func-
tions suitable for high{pass �ltering. Design of �lters which can not be
obtain using indirect methods is possible if frequency variable suitable for
low{pass �ltering is given with

x =
sin2(!T2 )� a

b sin(!T2 )
; (3)
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and trigonometric function suitable for high{pass �ltering is given with

y =
cos2(!T2 )� c

d cos(!T
2 )

; (4)

while constants a; b; c and d determine the cuto� frequencies of �lter.

Putting !T = �j ln z in equations (3) and (4) we obtain respectively

x2 =
[(z � 1)2 + 4az]2

�4z(z � 1)2b2
: (5)

and

y2 =
[(z + 1)2 � 4cz]2

4z(z + 1)2d2
(6)

Choosing corresponding values of parameters m;n; k; l; a; b; c and d it is
possible to obtain di�erent types of digital �lters.

Except these frequency variables for design of �lters can be used tangent
and secant function for low{pass �ltering and cotangent and cosecant func-
tion for high{pass �ltering. Filters obtained using these frequency variables
can be yielded using bilinear transform from analogous domain while �lters
obtained using sine and cosine frequency variables can not be obtain using
transforms from analogous domain.

2.1 Low{pass �lters

For m = l = 0, a = 0 and b = sin(!cT=2) one can obtain low{pass
�lters. The square of the amplitude characteristics of low{pass Butterworth{
Chebyshev polynomial digital �lters is given with

j Hn(e
j!T ) j2=

1

1 + "2x2kC2
n�k(x)

; (7)

Using well{known relation

C2
n(x) =

1

2
[C2n(x) + 1] (7)

one can written equation (7) in the more convenient form

j Hn(e
j!T ) j2=

1

1 + a2nx2n + a2n�2x2n�2 + � � �+ a2kx2k
; (9)
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where coe�cients ai can be obtained using next relation

a2i =

8><
>:

"2

2
(c0 + 1); i = k;

"2

2
c2(i�k); i = k + 1; k + 2; : : : ; n;

(10)

and ci are coee�cients of the Chebyshev �lters of order 2n. Substituting
constants a and b in equation (5) frequency variable for low{pass �ltering is
given with

x2 =
(z � 1)2

�4�z
; (11)

where � = 1= sin2(!cT=2). Substituting equation (11) in equation (9) we
obtain function G(z) which is equal to j Hn(e

j!T ) j2 when evaluated along
the unit circle

G(z) =
zn

zn +
a2n

(�4�)n
(z � 1)2n + � � �+

a2k
(�4�)k

(z � 1)2kzn�k
: (12)

It can be seen that denominator of G(z) is a image{mirror polynomial.
Therefore, we can write equation (12) in the next form

G(z) =
zn

b0 + b1z + � � �+ bnzn + � � �+ b1z2n�1 + b0z2n
: (13)

where coee�ciets of this image{mirror polynomial can be obtained from the
next simple relations

b2n�i =

8>>>><
>>>>:

nP
j=k

(�1)ja2j
�
2j
j

�
(�4�)j

+ 1; i = n

2n�iP
j=0

(�1)ja2(i+j�n)
�
2(i+j�n)

j

�
(�4�)i+j�n

; i = n+ 1; n+ 2; : : : ; 2n:

(14)

Equating the denominator of equation (13) with zero, the roots occur in
reciprocal pairs. The poles of the transfer function are merely roots inside
the unit circle.

Di�erentiating equation (7) with respect to !T , it is easily shown that the
cuto� slope of these �lters at the normalized frequency !T = !cT is given
by

Sn;k = �
"2[k + (n� k)2]

2
p
(1 + "2)3

cot
!cT

2
(15)
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From this expression one can conclude that cuto� slope depends from
order of �lter n, cuto� frequency !cT , parameter k and ripple factor ".
Decreasing parameter k and increasing maximall loss in passband, cuto�
slope is bigger. The cuto� slope depends on the width of the passband,
and it is smaller if the passband is wider. When a normalized value of the
passband is �, then the cuto� slope is equal to zero. Because of this, this
approximation is suitable for design of narrowband low{pass recursive digital
�lter.

Selectivity of these �lters can be improved using procedures described in
[8] and [9]. The procedure for design �lters which show gradual transition
and, at the same time, maintain the equiripple peaks has been described
in [8]. Obtained �lters have better cuto� slope in comparison with above
�lters. The e�ects of the introduction of a single or multiple zero pairs on
the unit circle on all{pole transitional Butterworth{Chebyshev �lter transfer
function are investigated in [9]. It is shown that for the same order, a �lter
with zeroes on the unit circle provides much sharper cuto� than all{pole
�lters. Formulas have been derived in closed form.

2.2 High{pass �lters

For n = k = 0, c = 0 and d = cos(!cT=2) one can obtain high{pass �l-
ters. The square of the amplitude characteristics of high{pass Butterworth{
Chebyshev polynomial digital �lters is given with

j Hn(e
j!T ) j2=

1

1 + "2y2lC2
m�l(y)

; (16)

Substituting constants c and d in equation (6) frequncy variable for high{
pass �ltering can be expressed in the next form

y2 =
(z + 1)2

�4�z
; (17)

where � = 1= cos2(!cT=2). Using the same procedure as in the previous
subsection one can yield a function G(z) which is equal to j Hn(e

j!T ) j2

when evaluated along the unit circle

G(z) =
zm

b0 + b1z + � � � + bmzm + � � �+ b1z2m�1 + b0z2m
: (18)

where coe�cients of this image{mirror polynomial can be obtained from the



316 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

next simple relations

b2m�i =

8>>>><
>>>>:

mP
j=l

a2j
�
2j
j

�
(4�)j

+ 1; i = m

2m�iP
j=0

a2(i+j�m)

�
2(i+j�m)

j

�
(4�)i+j�m

; i = m+ 1;m+ 2; : : : ; 2m:

(19)

Equating the denominator of equation (18) with zero, the roots occur in
reciprocal pairs. The poles of the transfer function are merely roots inside
the unit circle.

Di�erentiating equation (16) with respect to !T , it is easily shown that
the cuto� slope of these �lters at the normalized frequency !T = !cT is
given by

Sm;l =
"2[l + (m� l)2]

2
p
(1 + "2)3

tan
!cT

2
(20)

It can be seen from this expression that cuto� slope depends from order
of �lterm, cuto� frequency !cT , parameter l and ripple factor ". Decreasing
parameter l and increasing maximall loss in passband, cuto� slope is bigger.
The cuto� slope depends on the width of the passband, and it is smaller if
the passband is wider. When a normalized value of the passband is 0, then
the cuto� slope is equal to zero. Therefore, this approximation is suitable
for design of narrowband high{pass recursive digital �lter.

2.3 Band{pass �lters

Substituting

a = sin(
!1T

2
) sin(

!2T

2
);

b = sin(
!2T

2
)� sin(

!1T

2
);

c = cos(
!1T

2
) cos(

!2T

2
);

d = cos(
!1T

2
)� cos(

!2T

2
);

(21)

in (1) where !1T and !2T are lower and upper cuto� frequencies, respec-
tively, band{pass �lters will be obtained.

This squared{magnitude function for bandpass digital �lter which allows
exchangable zeros at z = 1 and z = �1 rad was described by Hazra [11]. For
�lters with this squared{magnitude function one can make independently a
choice of the skirt selectivity at each end of the passband.
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It can be shown that the improvement for Chebyshev �lters sine{cosine
type is not as signi�cant as in the Butterworth case. In this subsection
a simple method for direct synthesis of Butterworth passband digital �lter
sine{cosine type is presented.

Such a square of the amplitude characteristics of Butterworth band{pass
digital �lter is given with

j H(ej!T ) j2=
1

1 + "2x2my2n
; (22)

Parameters m and n are orders of the Butterworth polynomials which en-
ables independently selection of the multiplicity of the zero at z = 1 and
z = �1 separately.

Substituting (5) and (6) in (22) we obtain a function G(z) which is equal
to j H(ej!T ) j2 when evaluated along the unit circle

G(z) =
1

1 + "2
[(z + 1)2 � 4a1z]

2m

[4z(z + 1)2b21]
m

[(z � 1)2 + 4c1z]
2n

[�4z(z � 1)2d21]
n

: (23)

Equation (23) can be written in the following form

G(z) =
Czmzn(z + 1)2m(z � 1)2n

Czmzn(z + 1)2m(z � 1)2n + U(z)V (z)
; (24)

where constant C is
C = (4b21)

m � (�4d21)
n;

and functions U(z) and V(z) are image{mirror polynomials given with

U(z) = u0 + u1z + : : :+ u2mz
2m + : : :+ u1z

4m�1 + u0z
4m; (25)

and
V (z) = v0 + v1z + : : :+ v2nz

2n + : : :+ v1z
4n�1 + v0z

4n: (26)

The coe�cients of these image{mirror polynomials can be found from the
next relations

ui = "

iX
l=0

�
2m

l

��
4m� 2l

i� l

�
(�1)l(4a1)

l for i = 0; : : : ; 2m: (27)

and

vi = "

iX
l=0

�
2n

l

��
4n� 2l

i� l

�
(�1)i�l(4c1)

l for i = 0; : : : ; 2n: (28)
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Arranging the denominator of the equation (24) we can write

G(z) =
Czmzn(z + 1)2m(z � 1)2n

CzmznQ(z) + P (z)
; (29)

where Q(z) and P (z) are also image mirror polynomials. Their coe�cients
can be yielded from the next expressions

pi =

iX
j=0

ujvi�j for i = 0; : : : ; 2(m+ n) (30)

and

qi =
iX

j=0

sjri�j for i = 0; : : : ;m+ n (31)

where is

si =

�
2m

i

�
for i = 0; : : : ; 2m

and

ri = (�1)i
�
2n

i

�
for i = 0; : : : ; 2n:

The rest of coe�cients pi and qi can be found from properties of image{
mirror polynomials.

Finally, equation (29) can be written in the next form

G(z) =
Czmzn(z + 1)2m(z � 1)2n

f0 + f1z + � � � + f2(n+m)z2(n+m) + � � �+ f1z4(m+n)�1 + f0z4(m+n)
;

(32)
where coe�cients fi can be found from the next relation

fi =

8><
>:

pi for i = 0; : : : ;m+ n

qi�m�n + pi for i = m+ n+ 1; : : : ; 3(m+ n)

pi for i = 3(m+ n) + 1; : : : ; 4(m+ n)

(33)

Equating the denominator of equation (32) with zero, the roots occur in
reciprocal pairs. The poles of �lters are merely roots inside the unit circle.

By taking square root of (22) and di�erentiating with respect to !T , it is
easily shown that the cuto� slope SL at the normalized frequency !T = !1T
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for �lters sine{cosine type is given by

SL =
"2

2 (1 + "2)
3

2

h
m tan

!1T

2

cos !1T
2

+ cos !2T
2

cos !1T2 � cos !2T
2

+ n cot
!1T

2

sin !1T
2 + sin !2T

2

sin !2T
2 � sin !1T

2

i ;

and in the frequency !T = !2T cuto� slope SR is given by

SR =
�"2

2 (1 + "2)
3

2

h
m tan

!2T

2

cos !1T
2 + cos !2T

2

cos !1T
2 � cos !2T

2

+ n cot
!2T

2

sin !1T
2

+ sin !2T
2

sin !2T
2 � sin !1T

2

i :

It can be concluded from these expressions that cuto� slopes depend from
parameters m and n of �lter and value of cuto� frequencies.

It means that the skirt selectivity at each end of the passband can be
tailored independently by choosing parameters m and n separately, i.e. for
these �lters choosing parameter m and n one can make independently selec-
tion of the cuto� slope.

3. Design examples

This section presents �lter design examples to illustrate the e�ectiveness
of the proposed �lter design technique. The proposed design techniques were
used to design low{pass, high{pass and band{pass �lters.

Low{pass �lters: Following the procedure described in subsection 2.1, the
8-th order low{pass �lters are designed. The cuto� frequency is !cT = 0:3�.
Maximal loss in passband is Amax =1 dB.

In Table 1 the pole location of the 8-th order transfer functions are given
and in Figure 1 the corresponding digital frequency responses for di�erent
values of parameter k are displayed. In Table 1 one can �nd also cuto�
slopes of these transfer functions. The characteristics of the �lters exhibit
Butterworth{like behaviour near !T = 0 and Chebyshev{like behaviour near
!T = !cT .

It is interesting to note that the passband response and group delay char-
acteristics become atter as k is made larger, and the magnitude of the slope
at cuto� becomes larger as k is made smaller.

Transfer function for k = 7 is equal to transfer function for k = 8 because
Chebyshev and Butterworth polynomial of the �rst order are the same.
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Table 1. Pole location of eight order transfer function
for di�erent values of parameter k.

k 0 1 2 3 4 5 6 7

r1 .964989 .955585 .942520 .924421 .900121 .869522 .834391 .802926

�'1 .938702 .938771 .939844 .943266 .951370 .966689 .988348 1.00496

r2 .906688 .872704 .826064 .771669 .716786 .663539 .608502 .555128

�'2 .786190 .757479 .733578 .723800 .732361 .758281 .794307 .809040

r3 .869344 .794987 .716965 .648045 .588181 .537119 .490233 .438062

�'3 .516990 .462595 .442443 .444255 .455064 .471474 .499943 .510792

r4 .851907 .736822 .653412 .587776 .532367 .482849 .440688 .391445

�'4 .179633 .149223 .146963 .148616 .154288 .159645 .169597 .173554

S {11.5122 {8.9939 {6.8354 {5.0366 {3.5976 {2.5183 {1.7988 {1.4390

Figure 1. Frequency characteristics of the transitional �lters
for di�erent values of the parameter k; !cT = 0:3�;
Amax =1 dB; a) k = 0, Chebyshev �lter, b) k = 2,
c) k = 4 and d) k = 8, Butterworth �lter.

High{pass �lters: Using the procedure proposed in subsection 2.2, the 8-
th order high{pass �lters are designed. The cuto� frequency is !cT = 0:7�.
Maximal loss in passband is Amax =1 dB.
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The digital frequency responses for di�erent values of parameter l are
illustrated in Figure 2. The characteristics of the �lters exhibit Butterworth{
like behaviour near !T = � and Chebyshev{like behaviour near !T = !cT .
The passband response and group delay characteristics become atter as l
is made larger, and the magnitude of the slope at cuto� becomes larger as l
is made smaller.

Pole location for these �lters can be easily found from Table 1, because
modules of the poles are the same for corresponding �lters and phase{angle
is � � ' where ' is phase{angle of cooresponding low{pass �lter's pole. It
is consequence of the fact that the passband is the same in both examples.

Band{pass �lters: Following the procedure described in subsection 2.3
the 8-th order band{pass �lters are designed. The cuto� frequencies are
!1T = 0:3� and !2T = 0:5�. Maximall loss in passband is Amax = 1 dB.

In Table 2 the pole location of the 8-th order transfer functions are given
and in Figure 3 the corresponding digital frequency responses are displayed
for di�erent values of parameter m i n.

Figure 2. Frequency characteristics of the transitional �lters
for di�erent values of the parameter l; !cT = 0:7�;
Amax =1 dB; a) l = 0, Chebyshev �lter, b) l = 2,
c) l = 4, d) l = 6 and e) l = 8 Butterworth �lter.
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Table 2. Pole location of 8{th order transfer function
for di�erent values of parameter m and n.

m = 1 n = 7 m = 3 n = 5 m = 5 n = 3 m = 7 n = 1

Re(z) �Im(z) Re(z) �Im(z) Re(z) �Im(z) Re(z) �Im(z)

.02233 .91854 .02017 .93253 -.01822 .94250 .55665 .72860

.57262 .76021 .56942 .75278 .18772 .84240 -.01649 .94997

.04332 .79243 .02839 .82006 .56460 .74273 .42666 .66814

.49974 .70397 .48269 .69251 .07959 .76329 .01242 .86039

.13342 .71296 .10305 .73858 .45912 .67998 .06199 .78555

.41667 .66909 .38661 .66204 .15730 .70551 .12843 .72625

.22984 .67025 .19163 .68603 .35016 .65856 .30910 .66073

.32561 .65693 .28769 .66038 .24817 .66953 .21041 .68351

It can be concluded from Figure 3. that increase of parameter n will cause
rising of loss for frequency lower than cuto� frequency !1T , and increase
of parameter n will cause rising of loss for frequencies bigger than cuto�
frequency !2T .

For �lters sine{cosine type the cuto� slopes can be tailored independently
by choosing parameters m and n separately.

Figure 3. Frequency characteristics of Butterworth bandpass digital
�lters for a) m = 2;n = 6, b) m = 3;n = 5,
c) m = 4;n = 4, d) m = 5;n = 3, e) m = 6;n = 2
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6. Conclusion

The direct design of di�erent types of recursive digital �lters has been
considered. Formulas have been derived directly in digital domain, in closed
form. The implementation of the procedure is straightforward. The results
achieved for low{pass, high{pass and band{pass �lters have been desribed.
This can be easily programmed and a listing will be made available to the
interested reader on request.
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