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RELATIONS BETWEEN MATRIX

MULTIPLICATION, CONVOLUTION

AND LARGE{NUMBERS MULTIPLICATION

Zdenka Babi�c

Abstract. This paper presents a better way of reformulating matrix mul-
tiplication as polynomial multiplication and convolution. If the elements of
the product matrix are known to be bounded, matrix multiplication and con-
volution can be done, by using a scaling factor, with a single large{number
multiplication. The degrees of polynomials and size of numbers being multi-
plied are smaller than earlier. Also, adaptation a size of scaling factor and
multiplier's word{length with matrix dimensions, makes a number of multipli-
cation smaller, because we know beforehand that some products will be zero.
With increasing multiplier's word{length decreases number of multiplication,
so we can easily adapt this algorithm to various architectures. The algorithm
is especially suitable for implementing with parallel multipliers.

1. Introduction

The problems of determining the minimum number of multiplication need-
ed to multiply matrices and the design of fast algorithms for multiplying
matrices have both been active research area. Some algorithms with reduced
number of multiplication, as APA and algorithm presented in [1], use scaled
or sum of scaled matrix elements. In [1] the product of two N �N matrices
is reformulated as the linear convolution of a sequence of length N2 and a
sparse sequence of length N3 �N + 1. This results in a sequence of length
N3 +N2 �N , from which elements of the product matrix can be obtained.

Theorem 1 [1]:
Let A;B and C = AB all be N �N matrices with elements fai;jg, fbi;jg

and fci;jg, respectively. De�ne arrays a = faig, b = fbig, c = fcig, where:

ai;j = ai+jN ; bi;j = bN�1�i+jN ; 0 � i; j � N � 1: (1)
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The matrix multiplication C = AB is computed by the polynomial multi-
plication
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(2)
where the elements of C are read o� of the fcig computed in (2), using

ci;j = cN2
�N+i+jN2; 0 � i; j � N � 1: (3)

Let us consider 2 � 2 matrices for clarity; extensions to larger matrices
will be clear. The 2� 2 multiplication

�
a0;0 a0;1
a1;0 a1;1

� �
b0;0 b0;1
b1;0 b1;1

�
=

�
c0;0 c0;1
c1;0 c1;1

�
(4)

is implemented by the polynomial multiplication (equivalent to a convolu-
tion)

(a0;0 + a1;0x+ a0;1x
2 + a1;1x

3)� (b1;0 + b0;0x
2 + b1;1x

4 + b0;1x
6)

= �+ �x+ c0;0x
2 + c1;0x

3 + �x4 + �x5 + c1;1x
7 + �x8 + �x9:

(5)

Replacing x with sz, where s is scaling factor, and taking the result
mod(z6 � 1) produce:

(a0;0 + a1;0sz + a0;1s
2z2+a1;1s

3z3)� ((b1;0 + b0;1s
6) + b0;0s

2z2 + b1;1s
4z4)

= (�+ c0;1s
6) + (�s+ c1;1s

7)z + (c0;0s
2 + �s8)z2

+ (c1;0s
3 + �s9)z3 + �z4 + �z5; mod(z6 � 1)

(6)
If we choose scaling factor s that satis�es condition j ci;j j< s6 and

j � j< s6, then the ci;j and � in (6) may be separated from each other
without error. The equitation (6) is equivalent to 6{point circular convo-
lution, and can be calculated using pseudo{number{theoretical transforms
using only 6 multiplications. Number of multiplication decreases with in-
creasing scaling factor and, extremely, with j ci;j j< s and j � j< s, we have
circular convolution in one point. Take z = 1 and matrix multiplication can
be done with single multiplication:

(a0;0 + a1;0s+ a0;1s
2 + a1;1s

3)� (b1;0 + b0;0s
2 + b1;1s

4 + b0;1s
6)

= �+ �s+ c0;0s
2 + c1;0s

3 + �s4 + �s5 + c0;1s
6 + c1;1s

7 + �s8 + �s9:
(7)
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The 3� 3 matrix multiplication
2
4 a0;0 a0;1 a0;2
a1;0 a1;1 a1;2
a2;0 a2;1 a2;2

3
5
2
4 b0;0 b0;1 b0;2
b1;0 b1;1 b1;2
b2;0 b2;1 b2;2

3
5 =

2
4 c0;0 c0;1 c0;2
c1;0 c1;1 c1;2
c2;0 c2;1 c2;2

3
5 (8)

is implemented by a single multiplication with j ci;j j< s and j � j< s as
follows:

(a0;0 + a1;0s+ a2;0s
2 + a0;1s

3 + a1;1s
4 + a2;1s

5 + a0;2s
6 + a1;2s

7 + a2;2s
8)

� (b2;0+b1;0s
3+b0;0s

6+b2;1s
9+b1;1s

12+b0;1s
15+b2;2s

18+b1;2s
21+b0;2s

24)

= : : :+ c0;0s
6 + c1;0s

7 + c2;0s
8 + : : :+ c0;1s

15 + c1;1s
16 + c2;1s

17 + : : :

+ c0;2s
24 + c1;2s

25 + c2;2s
26 + : : :

(9)
The numbers being multiplied are massive, and dependent on the degree

of scaling factor s, that is maximally N3 � N for N � N multiplication.
This paper shows that the largest degree can be smaller and equal to N3 �
N2 + N � 1, so that the numbers being multiplied decrease. For 2 � 2
matrix multiplication the degree of s is �ve instead six, for 3 � 3 matrix
multiplication twenty instead twenty{four, and so on.

2. A better way of reformulating of matrix
multiplication as convolution

If we use another way to form polynomial coe�cients then in [1], the
degree of scaling factor decreases. The number being multiplied decrease
also, so that the number of multiplication can be smaller.

Theorem 2:

Let A;B and C = AB all be N �N matrices with elements fai;jg, fbi;jg
and fci;jg, respectively. De�ne sequences a = faig; b = fbig; c = fcig, where:

ai;j = aNi+j; bi;j = bN�1�i+jN ; 0 � i; j � N � 1: (10)

The matrix multiplication C = AB is computed by the polynomial mul-
tiplication
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(11)
where the elements of C are read o� of the fcig computed in (11), using

ci;j = cN2j+Ni+N�1; 0 � i; j � N � 1: (12)
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Proof:

The coe�cient of xN
2j3+Ni3+N�1 in (11) is the sum of the products of

the coe�cients of xNi1+j1 in the �rst polynomial and the coe�cients of

xN
2j2+N�1�i2 in the second polynomial such that

(Ni1 + j1) + (N2j2 +N � 1� i2) = N2j3 +Ni3 +N � 1;

0 � ik; jk � N � 1; 1 � k � 3:
(13)

The solution to (13) is readily seen to be

i1 = i3; j2 = j3; 0 � j1 = i2 � N � 1: (14)

Comparing (10), (12) and (14) shows that (11) implements C = AB.

The degrees of the polynomials multiplied in (11) are N3 �N and N3 �
N2 +N � 1, and the degree of the resulting polynomial is N3 +N � 2.

The 2� 2 matrix multiplication is implemented as:

(a0;0 + a0;1s+ a1;0s
2 + a1;1s

3)� (b1;0 + b0;0s+ b1;1s
4 + b0;1s

5)

�+c0;0s+ �s2 + c1;0s
3 + �s4 + c0;1s

5 + �s6 + c1;1s
7 + �s8;

(15)

and the 3� 3 matrix multiplication as:

(a0;0 + a0;1s+ a0;2s
2 + a1;0s

3 + a1;1s
4 + a1;2s

5 + a2;0s
6 + a2;1s

7 + a2;2s
8)

� (b2;0+b1;0s+b0;0s
2+b2;1s

9+b1;1s
10+b0;1s

11+b2;2s
18+b1;2s

19+b0;2s
20)

= : : :+ c0;0s
2 + c1;0s

5 + c2;0s
8 + : : : c0;1s

11 + c1;1s
14 + c2;1s

17 + : : :

+ c0;2s
20 + c1;2s

23 + c2;2s
26 + : : :

(16)
It is properly to choose scaling factor in a form s = 2p, so that we have

only shifting instead multiplying by s. For example, if the elements of the
product matrix are known to be bounded so that we can choose p = 6,
we can realize the 2 � 2 matrix multiplication as a single multiplication of
numbers 36 bits long. The algorithm presented in [1] uses 42{bit numbers
for this operation. And, if N = 3, 126 bits are needed, instead 162.

3. Matrix multiplication using number
theoretic transform (NTT)

We have seen that matrix multiplication can be reformulated as the cir-
cular convolution of arrays which elements are matrix elements or scaled
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matrix elements. The length of arrays depends on scaling factor. The con-
volution computation must be exact, because any round{o� error makes the
algorithm wrong. Therefore, NTT (especially Fermat transform) is suitable
to use for the convolution computation.

For the N{point cyclic convolution, N multiplications are needed. But,
there are strong relations between module M = 22

n

+1 and length of trans-
formation N = 2n+1, that limit selection of scaling factor and use for matrix
multiplication.

The idea behind pseudo{number{theoretic transforms, presented in [1],
is to replace the module 2n � 1 with a large prime divisor of 2n � 1. For
example, we might use to prime 5419 = (221 + 1)=(9)(43) as a module.
Note that reduction mod(5419) could easily be carried out by �rst reducing
mod(221 + 1), and then reducing only the reminder mod(5419) as desired.
The major advantage of pseudo{number{theoretic transform is the greater
choice of transform lengths. For 5419, we have transform of length 2,3,6,7,14
and 21 using 2 as a base, since 2 is clearly a 42-nd root of unity mod(5419).

In purpose to comparing, we repeat numerical example explained in [1],
for 2� 2 matrix multiplication using NTT with only six multiplication.

Numerical example 1:

Consider a 2� 2 matrix multiplication:

�
2 4
3 5

� �
9 8
7 6

�
=

�
46 40
62 54

�
(17)

j ci;j j< 64 and j � j< 64, so we can use s = 2 and module 5419. Reformu-
lating matrix multiplication as polynomial multiplication we have:

(2 + 3x+ 4x2 + 5x3)� (7 + 9x2 + 6x4 + 8x6)

= 14 + 21x+ 46x2 + 62x3 + 48x4 + 63x5 + 40x6 + 54x7 + 32x8 + 40x9

(18)
where ci;j are underlined. Scaling by s = 2, and taking the result mod(z6�1)
and mod(5419), the polynomial (6) for this problem is:

(2 + 6z + 16z2 + 40z3)� (519 + 36z2 + 96z4)

= 2574 + 1535z + 2957z2 + 4719z3 + 768z4 + 2016z5;

mod(z6 � 1); mod(5419):

(19)
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After the 6{point NTT, the products are:

k=0 [2+6+16+40][519+36+96]=[64][651]�=3731

k=1
�
2+6(128)+16(128)2�40

��
519+36(128)2�96(128)

�
=[2767][3641]�=4197

k=2
�
2+6(128)2�16(128)+40

��
519�36(128)+96(128)2

�
=[4175][2684]�=4627

k=3 [2�6+16�40][519+36+96]=[�28][651]�=3448

k=4
�
2�6(128)+16(128)2+40

��
519+36(128)2�96(128)

�
=[1306][3641]�=2683

k=5
�
2�6(128)2�16(128)�40

��
519�36(128)+96(128)2

�
=[2571][2684]�=2177

(20)
The separation of the elements ci;j of the product of matrix is as follows:

14 + 2640 �= 2574; 21(21) + 2754 �= 1535; mod(5419)

2246 + 28(32) �= 2957; 2362 + 29(40) �= 4719; mod(5419)
(21)

where the ci;j are again underlined.

4. Polynomial multiplication as a
large{numbers multiplication

We have seen that the matrix multiplication can be reformulated as poly-
nomial multiplication or convolution, and than implemented using only one
large{numbers multiplication if the scaling factor s ensured separability of
everything in the product. Clearly, we can multiply large numbers with par-
allel multipliers with arbitrary word{length. Some modules have advantages
for certain matrix dimensions.

Numerical example 2:

Let us illustrate this algorithm with same 2 � 2 matrix multiplication as
in Example 1: �

2 4
3 5

� �
9 8
7 6

�
=

�
46 40
62 54

�
(22)

For clarity, choose we �rst s = 100. Based on theorem 2:

(5040302)(8000600090007) = 403254 40634862 462114 (23)

where ci;j are underlined. The choice s = 64 instead of s = 100 produces
similar result in binary notation, and the result is smaller than that of (23)
by a factor of (100=64)10 = 86:7.

Since ci < 64 we can choose scaling factor s = 26. Then, form the arrays
as follow from (10):

a(n) = f2; 4; 3; 5g and b(n) = f7; 9; 0; 0; 6; 8g: (24)
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Based on (15) we need to multiply two large numbers, in binary notation:

A = 000101000011000100000010;

B = 001000000110000000000000001001000111:
(25)

Results of each multiplication's must be exact, because any error may
cause unpredictable error in matrix product. All bits in massive number
multiplication are valid. Rounding is not permissible. We need to take care
about this in implementation. If oating{point multipliers are used, it is
not possible to take advantages of full capacity of multipliers. Floating{
point multipliers are usually more expensive. The increased cost results
from the more complex circuitry required within the oating{point proces-
sor, which implies a larger silicon die. Integer multipliers are faster and
realized with less hardware then oating{point multipliers, therefore they
are recommended for exact massive number multiplication.

Make a preposition that we have 12{bit multipliers. A segmentation by
12 bits allows us to write A and B as follows:

A = a12
12 + a0; a1 = 323; a0 = 102;

B =b22
24 + b12

12 + b0; b2 = 518; b1 = 0; b0 = 583
(26)

where a1; a0 and b2; b1; b0 are 12{bit long numbers.

Multiplying A�B gives:

(a12
12 + a0)(b22

24 + b12
12 + b0)

= a1b22
36 + (a0b2 + a1b1)2

24 + (a1b0 + a0b1)2
12 + a0b0

(27)

Therefore, we need six 12{bit multiplications. The number of multiplica-
tion can be smaller if we choose the module on the appropriate way. It is
easy to see that b1 is independent on matrix elements values, and is always
zero. Since, we need only four 12{bit matrix multiplications.

For our example:

C = A�B = 167314 � 236 + 133644 � 224 + 188309 � 212 + 150414: (28)

For clarity, write C in binary notation:

C=101000k110110k110010k101000k111001k111110k011001k101110k001110
(29)

A segmentation by 6 bits produces array:

c(n) = f22; 46; 25; 62; 57; 40; 50; 54; 40g: (30)
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Based on (12) we can read o� elements of matrix C:

c0;0 = c(1) = 46 c0;1 = c(5) = 40

c1;0 = c(3) = 62 c1;1 = c(7) = 54
(31)

Comparing with the example 1, we can see that the direct and inverse
NTT is avoided, the word{length is not increased, but number of multipli-
cation is 4 instead 6. Generally, it is possibly implement the 2 � 2 matrix
multiplication with four multiplications if the word{length of multipliers is
two times greater then the number of bits needed to present elements of
matrix products.

The Strassen algorithm [3] for 2 � 2 matrix multiplication uses 7 multi-
plications and 18 additions instead then obvious 8 multiplications and four
additions. If processors with implemented hardware multipliers are used,
number of multiplications is not more critical factor, because time consump-
tion for multiplication is the same as for addition. In this case Strasssen
algorithm has not advantages.

Algorithm presented in this paper needs only four multiplications and no
addition. The savings in number of operations is made with detriment in
multipliers word{length. In the real signal processing samples are of 8, 12 or
16 bit accuracy. Improvement in digital hardware is much faster then in A/D
conversion, so we have now RISC [4], VPP ULSI [5] and signal processors
[6],[7] with 32 � 32 bit multipliers. There is a redundancy in computation
precision, because �nally precision is limited by A/D conversion. In such
cases, when accuracy of samples is bounded to 8 bits, and speed is a critical
factor, 32 � 32 multipliers can be used for 2 � 2 matrix multiplication with
only four multiplications.

5. Conclusion

The algorithm presented in this paper gives a better way of linking ma-
trix multiplication, convolution, and large{number multiplication. Matrix
multiplication is reformulated as a linear convolution and polynomial mul-
tiplication, and, �nally, by using a scaling factor, as a single large{number
multiplication. The polynomial degrees and size of numbers are smaller than
used in [1]. Also, adaptation a size of scaling factor and multipliers word{
length with matrix dimensions, makes a number of multiplication smaller,
because we know beforehand that some products will be zero. For example,
for 2� 2 matrix multiplication, number of multiplication is 4, instead than
obvious 8, 7 in Strassen's algorithm, and 6 in [1]. The exibility of this
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algorithm allows trade{ o� between word{lengths and number of multipli-
cation, that is important for adapting this algorithm to various computer
architectures, especially for parallel processors.
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