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ROBUST DECENTRALIZED FEEDBACK

CONTROLLERS FOR THE TURBOGENERATORS

Trajko Petrovi�c and Vladimir D� ord�evi�c

Abstract. Robust decentralized linear feedback controllers for the turbogener-
ators, using the structured singular value approach, are investigated. Di�erent
structures of decentralized controllers were applied and tested. The controllers
were designed for structured and unstructured model uncertainty. The gain
directionality compensation, due to a high condition number was considered.

1. Introduction

The single{machine in�nite{bus system is a multivariable plant whose
gain depends strongly on the direction of the input (control) signal. A pa-
rameter describing the gain directionality property is the condition number

cn =
�(P )

�(P )
(1)

Here �(P ) and �(P ) denote the maximum and the minimum singular
value of the plant

�(P ) = max
u 6=0

fjjPujj2=jjujj2g

�(P ) = min
u6=0

fjjPujj2=jjujj2g
(2)

where jj � jj2 is the Euclidean norm. The plants with a strong gain direction-
ality property have a high condition number (ill{conditioned plants) [1-3].

The main problem in the control of ill{conditioned plants is the inherent
presence of model uncertainty. The disagreement between plant P and model

Manuscript received January 21, 1997.
Prof. dr T. Petrovi�c is with Faculty of Electrical Engineering, Department of Control

Engineering, Bulevar revolucije 73, P.O. BOX 35{54, 11120 Belgrade, Yugoslavia. V.
D� ord�evi�c is with Elektrosrbija Kraljevo, Elektrodistribucija Valjevo, Suvoborska 20, 14000
Valjevo, Yugoslavia.

171



172 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

~P can, in the case of turbogenerator systems, successfully be described by a
normalized multiplicative input perturbation argument �u

P = ~P (I + lu�u) and �(�u) < 1 (3)

where I and lu denote the unity matrix and the uncertainty weighting op-
erator respectively. The function lu is also called the upper bound of model
uncertainty [2,3]. The matrix �u is an unknown unity norm bounded matrix
�(�u) < 1. If �u is a full matrix then the uncertainty is called unstructured.
The structured model uncertainty assumes a block diagonal �u.

2. The plant

The typical single{machine in�nite{bus system consists of a generating
unit connected to a constant voltage bus through two parallel transmission
lines. An excitation system and automatic voltage regulator (AVR) are
employed to maintain the terminal voltage pro�le. An associated governor
monitors the shaft frequency and controls mechanical power and speed. The
overall system is represented as a two{input, two{output system with the
mechanical power and exciter{voltage settings as the two inputs and the
measured incremental changes in load angle and terminal voltage as the
outputs.

2.1 Linearized model

Neglecting the transients in stator circuit and the e�ect of rotor amortis-
seur, a simpli�ed linear model for a synchronous machine connected to an
in�nite bus through a transmission line is given below in the form of Park's
twoaxis machine representation [4]:

_e0q = � 1

k3�
0
d0

e0q �
k4
� 0d0

� +
Ka

� 0d0
vs +

Ka

� 0d0
vref +

Ka

��d0

v1 (4)

_! = � k2
2H

e0q �
k1
2H

� � D

2H
! =

1

2H
tm (5)

_� = !0! (6)

0 = vd + rdid � xqiq (7)

e0q = vq + rqiq + xdid (8)

v2t = v2d + v2q (9)
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where � denotes machine load angle in radians, ! is machine rotor speed
in pu (per{unit), e0q represents quadrature axis transient voltage in pu, vt
is terminal feedback voltage in pu, � 0d0 is d{axis transient open circuit time
constant in seconds, D is damping coe�cient, H is inertia constant and
Ka is exciter gain. The transmission network having an impedance of re +
jxe, which is connected to an in�nite bus with voltage vb, is given by the
equations:

vd = vb sin � + reid � xeiq (10)

vq = vb cos � + reiq + xeid (11)

where vd, vq , id and iq represent direct and quadrature axis voltages and
currents respectively. A simpli�ed AVR and exciter model is given in the
form of the �rst order �lter as:

_v1 = � 1

�r
v1 � k6

�r
e0q �

k5
�r
� +

1

�r
vref (12)

where ke is AVR gain, �e is AVR time constant and vref is reference input
voltage. A power system stabilizer (PSS) is given in the form

_v2 = �KstabD

2H
! � Kstabk1

2H
� � Kstabk2

2H
e0q �

1

�w
v2 +

Kstab

2H
tm (13)

_vs = �Kstab�1
�22H

(D!�k1��k2e0q)�
�

�1
�2�w

+
1

�2

�
v2� 1

�2
vs+

�1Kstab

�22H
tm (14)

where Kstab is gain and �1, �2 and �w are PSS time constants and tm is
mechanical power.

Under normal operating conditions, applying small perturbation relations
around a certain equilibriumpoint can derive a linear, time{invariant system.
A linearized model [4] is shown in block diagram Fig. 1, where the parameter
expressions of k1; : : : ; k6 are given in [5].

The following parameters were used in the derivation of the power sys-
tem transfer function matrix (machine parameters in pu, time constants in
seconds) [5]:

Pn = 0:9, Qn = 0:3, k1 = 0:76, k2 = 0:86, k3 = 0:32, k4 = 1:41, k5 = �0:14,
k6 = 0:41, � 0d0 = 7:3, D = 0:0, H = 3:5, Ka = 200, Kstab = 9:5

where Pn is nominal real power and Qn is nominal reactive power.
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Figure 1. The block diagram of a system with a PSS and AVR

The resulting transfer function matrix (model) ~P , with system state vari-
ables

x = [� ! e0q v1 v2 vs]
T (15)

that maps the vector control signal

u = [tm vref ]
T (16)

into the system output signal

y = [� vt]
T (17)

in matrix transfer function form, is

~P (s) =
1

~D(s)

�
~N11(s) ~N12(s)
~N21(s) ~N22(s)

�
(18)

where

~N11(s) = [3769:9s4+307021s3+8767558s2+105021172s+231332389] (19)

~N12(s) = [�551:5s4 � 45221s3 � 1201254s2 � 17845247s � 94834565] (20)

~N21(s) = [�465959s3 � 37750791s2 � 732726395s � 504294906] (21)
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~N22(s) = [4168s5 + 337680s4 + 6793978s3 + 23935230s2

+377017608s + 259480292]
(22)

~D(s) = [s6+81s5+2366s4+312014s3+159519s2+1073268s+717502] (23)

The superscript T denotes transposition. The details concerning the mod-
eling of power system can be found in [4,5].

2.2 Model uncertainty and the upper bound

The characteristics of the power system vary with system operating condi-
tions because parameters k1; : : : k6 are a function of power system con�gura-
tion, loading condition etc. [5]. Such nonlinear behaviors can be modeled by
the uncertainty model principle. The multiplicative model error is estimated
by plotting the frequency responses of the system under various operating
conditions, and a bound is chosen to represent the largest uncertainties, as

lu(s) > max j
~Pi(s)� ~P (s)

~P (s)
j (24)

where ~Pi is model of the plant under various operating points.

For each type of system con�guration and/or operating condition vari-
ations, such lu represents the worst case of the model uncertainties. An
example of such case is shown in Fig. 2, showing model uncertainties under
�ve operating conditions and the uncertainty bound.

Alternatively, lu may be estimated from the frequency responses of non-
linear numerical or laboratory test benches at various operating points. It
is not necessary to determine lu with great accuracy, but only to estimate
its essential features.

The following upper bound of model uncertainty was obtained

lu = 0:25

s

0:1
+ 1

s

20
+ 1

I (25)

2.3 Singular values

Fig. 3 shows the frequency response of the singular values and the con-
dition number of the model ~P . At low frequencies the condition number is
better cn(s = 0) � 29. The singular value decomposition at s = 0

~P = U�V T (26)
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where U and V are left and right singular vector matrix and � represent
diagonal matrix of the singular values

U = (u; u) =

�
0:89 �0:44
�0:44 �0:89

�

V = (v; v) =

�
0:4 �0:91
�0:91 �0:4

� (27)

where (u; u) and (v; v) are left and right singular vectors associated with
�; �:

� = diag(�; �) = (86:34; 2:75)

~Pv = �u

~Pv = �u

(28)

reveals that the input direction with the largest gain is v = (0:4;�0:91)T and
the output direction associated with this input direction is u=(0:89;�0:44)T .
The input direction with the smallest gain is v = (�0:91;�0:4)T and its
output direction is u = (�0:44;�0:89)T .

Figure 2. Model uncertainties and the upper bound

The condition number increase with frequency. At high frequency (s =
j100 rad/s (j =

p�1)) the condition number is cn � 116. The singular
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value decomposition at s = j100 rad/s

~P = U�V T (29)

U = (u; u) =

�
0:01 0:99
�0:99 0:01

�

V = (v; v) =

�
0:0015 1
�1 �0:0015

� (30)

� = diag(�; �) = (3:96; 0:04)

~Pv = �u

~Pv = �u

(31)

reveals that the input direction with the largest gain is v � (0;�1)T and the
output direction associated with this input direction is u � (0;�1)T . The
input direction with the smallest gain is v � (1; 0)T and its output direction
is u � (1; 0)T .

The consequence of this gain directionality is that setpoint changes colli-
near with require large control actions. Similarly it is expected that distur-
bances collinear with u are more di�cult to reject.

Figure 3. The singular value and the condition number frequency response
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3. The �{optimality framework

Figure 4 shows the block diagram of a feedback system with input mul-
tiplicative model uncertainty and with setpoints as external inputs. The
operator Wp is the sensitivity weighting �lter. Wp is used by the designer
to give a speci�ed shape to the sensitivity operator E:

E(r ! e) = (I + PK)�1 (32)

The robust performance means that the weighted multiplicative norm (or
seminorm) of the sensitivity operator is unity bounded for any perturbation
�u of the plant

jjWpEjjm < 1 (33)

where the operator jj � jjm denotes a multiplicative norm (or seminorm). The
sensitivity weight are chosen as in [6]:

Wp =
0:02(s + 0:2)

s+ 0:002
I (34)

This sensitivity weighting �lter indicates that at low frequency, the closed{
loop system should reject disturbances at the output by a factor of 20{to{1.
In other words, the steady{state tracking error due to reference step- input
should be on the order of 0.05 or smaller. This performance speci�cation
gets less emphasis at higher frequency.

Figure 4. The block diagram of the feedback system
with setpoint changes as external inputs

When Fig. 4 is rearranged to match Fig. 5 the interconnection matrix G
is obtained as follows:

G =

�
M G12

G21 G22

�
=

� �K ~E ~P lu K ~E
�Wp

~E ~P lu Wp
~E

�
(35)



T. Petrovi�c et al: Robust decentralized control for the ... 179

~E = (I + ~PK)�1 (36)

Simple manipulations give:

E = G22 +G21�u(I �M�u)
�1G12 (37)

The �{optimality framework gives the following conditions [7-11]:
1� nominal stability ) G is (internally) stable
2� nominal performance ) NP = sup!fnp(!)g < 1; np(!) = �(G22)
3� robust stability ) RS = sup!frs(!)g < 1; rs(!) = ��u

(M)
4� robust performance ) RP = sup!f(rp(!)g < 1; rp(!) = ��(G)

where � = diag(�u;�p) and �p is a full unity norm bounded matrix
(�(�p) < 1). The operator ��(!) denotes the structured singular value of
the operand! computed according to the block{diagonal structure of � [9].
The functions NP;RS and RP are a measure of the nominal performance
(NP), robust stability (RS) and robust performance (RP) respectively.

Considering that the transfer function � is unknown (e.g. the argument
and the magnitude of this function is unknown), all that is known about � is
that its magnitude is unity bounded (�(�p) < 1), conditions 2{4 ensure that
the closed{loop system from Fig. 5 cannot be destabilized by any such �.
Intuitively, the concept of the NP;RS and RP measure (conditions 2{4) can
be understood as a demand that the loop gain of the feedback system from
Fig. 5 be kept less than 1 at any frequency. In other words, the smaller is the
NP, RS and RP measure the better is the performance and the robustness
of the closed{loop system from Fig. 4.

Figure 5. The G�� form
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4. The decentralized (diagonal) controller design

The basic idea in decentralized control is to generate the i{th control
signal only with respect to the i{th output signal, and the in
uence of other
control signal is neglected. This approach is a natural consequence if the
plant P is diagonal or, in other words, if the interaction between the inputs
does not exist [3,10,11].

We approximate P with ~P , where

P =

2
664
P11 P12 : : : P1n
P21 P22 : : : P2n
...

...
...

Pn1 Pn2 : : : Pnn

3
775 (38)

and
~P = diag(P11; P22; : : : ; Pnn) (39)

Consequently, the optimal controller K = K̂ will be diagonal:

K̂ = diag(K1;K2; : : : ;Kn) (40)

The sensitivity and complementary sensitivity operators with ~P instead
of P are Ê and Ĥ respectively:

Ê = diag(Ê1; Ê2; : : : ; Ên) = (I + P̂ K̂)�1 (41)

Ĥ = diag(Ĥ1; Ĥ2; : : : ; Ĥn) = P̂ K̂(I + P̂ K̂)�1 (42)

In this study the following parameterizations of the diagonal controller
was used:

K̂1 =
kd
s
diag

�
1
~P11

;
1
~P22

�

K̂2 =
1

s
diag

�
kd1
~P11

;
kd2
~P22

� (43)

5. The optimization

The goal is to select the adjustable parameters in order to derive the
best RP measure. First shall be assume that K̂ = K̂1 and that the un-
certainty is not structured (�u =full matrix). Fig. 6 shows the nominal
performance, robust stability and robust performance measure as a func-
tion of the adjustable parameter kd(NP (kd); RS(kd); RP (kd)). As can be



T. Petrovi�c et al: Robust decentralized control for the ... 181

seen with such a parameterization the robust performance demand can be
reached ) RP (kd) < 1 for any kd < 0:055.

The reason for such a relatively high RP measure is that the controller K̂
is basically an inversion based controller with respect to ~P . Such a controller
completely compensates the gain directionality of the nominal diagonal plant
( ~P ) and a good NP measure can be expected. Unfortunately, even slight
perturbations of the plant can modify the gain directions causing that the
closed{loop performance and stability measure deteriorates.

Figure 6. Decentralised controller design for unstructured model uncertainty.
NP,RS and RP measure are shown as a function of the adjustable
parameter kd : NP (kd); RS(kd) and RP (kd)

In Fig.7 the frequency response of rp(~kd; !) = ��[G(~kd; !)]; rs(~kd; !) =

��[M(~kd; !)] and np(~kd; !) = �[Wp
~E(~kd; !)], for kd = ~kd = 0:055, is shown.

The maximum of the rp measure is RP (~kd) = 0:99.

With the controller ~K2 better RP measure was obtained for kd1 = ~kd1 =
65 and kd2 = ~kd2 = 0:05, and RP (~kd1; ~kd2) = 0:99. Obviously this parame-
terization gives a better results than the previous. The nominal performance
NP , robust stability RS and robust performance RP measure as a function
of two adjustable parameter kd1 and kd2 are shown in Fig.8a, 8b and 8c.
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Now shall be assume that the uncertainty is structured. This means that
�u is a diagonal matrix. In the case of turbogenerators this assumption is
more realistic than the assumption that �u is a full matrix.

If K̂ = K̂1 in Fig.9 theNP;RS andRP measure are shown as a function of
the adjustable parameter kd. Comparing this �gure with Fig.6, an improve-
ment can be observed. TheRP;RS andNP demand can be satis�ed for kd <
2:1. Figure 10 contains the frequency responses of rp(~kd; !) = ��[G(~kd; !)],

rs(~kd; !) = ��u
[M(~kd; !)] and np(~kd; !) = �(Wp

~E(~kd; !); kd = ~kd = 2:1.

Figure 7. Unstructured model uncertainty, kd = 0:05.
The frequency responses of: np(!); rs(!) and rp(!).

The lower RP measure is obviously the consequence of the structure of the
uncertainty. Namely, a diagonal perturbation argument �u does not alter
the direction of the control signal u (see Fig.4) signi�cantly. In other words,
the nominal and the perturbed gain directions of the plant are similar; this
has a positive impact on the closed{loop behavior of the inversion based
controller.

For K̂ = K̂2 the optimum parameters are ~kd1 = 69 and ~kd2 = 2, and
RP (~kd1; ~kd2) = 0:99 and this controller yields an robust closed{loop perfor-
mance. The robust stability RS and robust performance RP measure as a
function of two adjustable parameter kd1 and kd2 are shown in Fig.11a, 11b
and 11c.



T. Petrovi�c et al: Robust decentralized control for the ... 183

Figure 8. Unstructured case: NP, RS and RP measure are shown as a
function of the two adjustable parameters kd1 and kd2:
(a) NP (kd1; kd2), (b) RS(kd1; kd2) and (c) RP (kd1; kd2).
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Figure 9. Decentralized controller design for structured modeluncertainty.
NP,RS and RP measure are shown as a function of the
adjustable parameter kd: NP (kd); RS(kd) and RP (kd).

Figure 10. Structured model uncertainty, kd = 2:0.
The frequency responses of: np(!); rs(!) and rp(!).
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Figure 11. Structured case: NP, RS and RP measure are shown as a function
of the two adjustable parameters kd1 and kd2
(a) NP (kd1; kd2), (b) RS(kd1; kd2) and (c) RP (kd1; kd2).
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6. The transient analysis

To see how the system reacts to external disturbances or setpoint changes
some closed{loop simulations have been performed. The input signals were
chosen to correspond to the most critical directions ) low gain directions.
Fig. 12a contains the response to a set point change of the input tm. As
expected the best response is obtained with K̂2 designed for structured
uncertainty and the worst with the K̂1 designed for unstructured uncer-
tainty. From this �gure it is evident that the controllers designed for struc-
tured uncertainty have a better response. Fig. 12b shows the same re-
sponse as Fig.12a, but with a di�erent load condition (perturbed plant):
(0:8Pn; 0:8Qn).

The di�erence between the responses observed in Fig.12 is more expressive
in Fig.13 (a) case (P = ~P ) and (b) for the case of perturbed plant (P 6=
~P ). Fig. 14-15 shows the other response of the nominal and perturbed
system to a step change in reference voltage setpoint vref and step change
in mechanical power tm.

Obviously, the best step response was obtained with a controller:

K = K̂2 =

2
64
kd1d(s)

n11(s)
0

0
kd2d(s)

n22(s)

3
75 (44)

where

kd1 = 69; kd2 = 2 (45)

n11(s) = [1130s4 + 92106s3 + 2630267s2 + 31506351s + 69399716] (46)

n22(s) = [2092s4 + 88695s3 + 182772s2 + 5101174s + 3583611] (47)

d(s) = [s5 + 43s4 + 785s3 + 3568s2 + 29040s + 19824] (48)
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Figure 12. Response of the load angle to a step setpoint change acting on
tm (mechanical power), (a) case ( ~P = P ), (b) case ( ~P 6= P ).
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Figure 13. Response of the terminal voltage to a step setpoint change acting on
vref (exciter references), (a) case ( ~P = P ), (b) case ( ~P 6= P ).
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Figure 14. Response of the load angle to a step setpoint change acting on
vref (exciter references), (a) case ( ~P = P ), (b) case ( ~P 6= P ).
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Figure 15. Response of the terminal voltage to a step setpoint change acting on
tm (mechanical power), (a) case ( ~P = P ), (b) case ( ~P 6= P ).
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7. Conclusions

A general conclusion is that a good analysis of the structure of uncertainty
is crucial for the design of decentralized control. If this part of the job is
done properly, then can be, with relatively simple and easy{to{understand
weighting functions (Wp; lu), assign the closed{loop parameters and design
of the controllers. In other words, the better our knowledge of the plant
is, the better the control action will be. This example clearly illustrates
that the controllers designed for structured uncertainty have a better RP
measure and a better transient behavior than their counterparts designed
for unstructured uncertainty.
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