
FACTA UNIVERSITATIS (NI�S)
Series: Electronics and Energetics vol. 10, No.2 (1997), 215-230

CATALYTIC MIGRATION: A STRATEGY FOR

CREATION OF TECHNOLOGY{SENSITIVE

MICROPROCESSOR ARCHITECTURES

Veljko Milutinovi�c

Abstract. Existing approaches to the architecture, organization, and design
of modern CPUs are summarized, and a promising new strategy is de�ned:
catalytic migration. The discussion that follows concentrates on three issues:
classi�cation of catalytic migration approaches, examples of catalytic migration
approaches, and the related performance evaluation.

1. Introduction

According to many researchers [e.g., 1], there are two basic approaches to
supercomputer design. One is oriented towards extremely fast and powerful
CPUs (of which just one or a few exist in the system). The other is oriented
towards massive parallelism, using microprocessor technology (where the
system is composed of a relatively large number of processing units).

Both approaches have merits, and the presentation which is the subject
of this paper is applicable to both, although it yields better results in the
case of the second approach. This is due to the fact that the strategy which
is discussed here deals with technology{sensitive constraints on the type and
quantity of resources that could be incorporated into the CPU. These con-
straints are "soft" (less stringent) if the design of a single but extremely fast
and powerful CPU is not constrained to a single VLSI chip (constraints are

Manuscript received March 14, 1996.
Manuscript revised June 29, 1997.
This research was partially sponsored by the NCR World Headquarters, Dayton,

Ohio, U.S.A. Simulation package ENDOT was donated by the TD Technologies Cleveland
Heights, Ohio, U.S.A.

The author is with Faculty of Electrical Engineering, POB 35{54, 11120 Belgrade,
Yugoslavia.

215



216 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

derived from the physical aspects of the design structure, cooling capabilities,
interconnection delays, and similar). The constraints are "hard" (stringent)
if the design of a single{chip CPU is considered, especially if GaAs implemen-
tation is involved (constraints are related to VLSI area limitations and the
relatively large ratio of o�{chip to on{chip delays). The strategy discussed
here is more suitable for the environment with "hard" rather then "soft"
limitations. Consequently, the rest of the text will be related to the "hard"
environments, but the reader should be aware of the fact that the same con-
clusions (conditionally) also apply to the "soft" environments (environments
with "soft" constraints).

This paper is predominatly oriented to technologies with a relative small
on{chip transistor count, and a relatively large ratio of o�{chip to on{chip
delays. One example of such technology is GaAs.

The basic advantages of GaAs technology relate to relatively high speed,
high radiation hardness, and robustness in harsh environmental conditions.
All these issues are covered extensively in the open literature, and for details,
the interested reader is referred to the existing references [e.g., 2,3,4, and 5].
The basic disadvantages of GaAs technology are its high production cost,
relatively low yield which results in relatively small chips, and a relatively
large ratio of o�{chip to on{chip signal delays and/or memory access times.
Again, these issues are assumed to be well known [e.g., 4 and 5], and will
not be further elaborated here.

Numerous companies have been using GaAs as the implementational ve-
hicle for their new computers. Supercomputer and supermini companies like
Cray, ETA, and Gould have exploited the direction of the "random{logic"
based design of extremely fast and powerful CPUs (using SSI, MSI, and LSI
components), in conditions when the maximal attention has been dedicated
towards advancing the state{of{the{art in the packaging and interconnec-
tion technology. On the other hand, companies like TI, McDonnell Douglas,
and GE (RCA), for a number of years have exploited the direction of the
VLSI based design of single{chip CPUs, in conditions when the maximal
attention has been dedicated towards advancing the state{of{the{art in the
GaAs semiconductor technology. More recently, one or the other approach
has been adopted by some additional "large{scale" companies (e.g., AT&T,
NCR, and Sun), as well as a few "start{up" companies (e.g., Gazelle Micro-
circuits, Paci�c Semiconductor, and Prisma).

Concuriently, lots of good theoretical and practical research has been car-
ried out in universities. Examples include, but are not limited to, University
of Michigan [6], University of California in Santa Barbara [7], and Renselaer
Polytechnic [8].



V. Milutinovi�c: Catalytic migration: a strategy for creation ... 217

2. Problem statement

These days, the problem is not how to design and implement a 32{bit
GaAs microprocessor. That problem has been successfully solved. What
is the problem now is how to generate the architecture, organization, and
design, so that a GaAs microprocessor is approximately N times faster than
its silicon counterpart, where N is the speed ratio of the two technologies
on the device level. What is relevant is the speed of the compiled high{level
language (HLL) code, not the speed of the system clock1.

In some of the existing 32{bit GaAs microprocessors, the clock is ex-
tremely fast. However, the memory pipelines of GaAs microprocessors tend
to be fairly deep, due to the fact that the semiconductor technology has ad-
vanced much more than the packaging and interconnection technology. This
makes it very di�cult to handle branch delays, load delays, and coprocessor
delays. Consequently, in most practical implementations, the speed of the
compiled HLL code is not nearly as good as indicated by the clock speed.
The ratio of the peak execution speed and the average execution speed tends
to get fairly large [e.g., 9].

Therefore, the problem is how to achieve a speed{up which is close to
N (as de�ned above). Importance of this problem is proportional to the
overall manufacturing costs of GaAs microprocessors. In other words, the
manufacturing costs are so high in GaAs that, unless the speed{up is good
enough, the cost{performance product will not be as good as in silicon (of
course, if other considerations like radiation{hardness dominate, the choice
will be cost/performance independent).

The solution to the problem depends on the relationship between the
semiconductor technology and the technology of packaging and interconnec-
tion. If advances in the packaging and interconnection technology follow the
advances in semiconductor technology, the ratio of o�{chip to on{chip delay
will be relatively small (for GaAs, compared to silicon), and the fact that
GaAs chips are relatively small will not require large changes in the archi-
tecture, organization, and design, compared to what is the current silicon
practice. In other words, silicon solutions will work for GaAs as well (more
on{chip registers and cache memory, or similar).

However it is believed that the advances in semiconductor technology will
not be followed by corresponding advances in the packaging and intercon-
nection technology. Therefore, the ratio of o�{chip to on{chip delays will

1Fast system clock is sometimes achieved by making the pipeline deeper [9]. If applied
compile{time optimization techniques are not e�cient in the presence of deep pipelines,
the speed of compiled HLL code can be very poor.



218 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

continue to be relatively large. Consequently, partitioning of functions across
the boundaries of relatively small GaAs chips will continue to be an issue of
major importance.

This paper assumes the latter scenario, and concentrates only on the
solutions2 which are aimed to an environment which is characterized by rel-
atively small chips and relatively large ratios of o�{chip to on{chip delays.
Some researchers may argue that the packaging and interconnection tech-
nology can be substantially improved, and that the basic assumption of this
paper will no longer hold (relatively high ratio of o�{chip to on{chip delays).
There are two answers. First, this design strategy is applicable to all tech-
nologies characterized with small chips and a relatively high ratio of o�{chip
to on{chip delays (today it is GaAs, tomorrow it is another technology).
Second, systems have to be built today, before the more sophisbcated pack-
aging and interconnection technology becomes available (this time period
may last longer than expected). In conclusion, the strategy was born in the
GaAs environment, but it should be treated in a technology{independent
way3.

3. Existing solutions

The approach to the architecture, organization, and design of "�rst gener-
ation" GaAs microprocessors was characterized by combination of "techno-
logy{related �ne{tuning of the design" and "technology{related re{evaluati-
on of the algorithms." Under the term "�ne{tuning of the design" we mean
adjusting the design parameters in existing solutions, so that the utilization
of resources is not lowered when a new technology is applied. By "careful
re{evaluation of the algorithms", we mean that whenever there exist more
than one algorithm to implement a resource, all these algorithms should be
re{evaluated, in order to �nd out which one is the best suited for the new
technology (often, not the one which is traditionally believed to be the best,
because it was the best under the conditions and criteria typical of silicon).
Two representative examples follow, one for each of the two basic strategies
de�ned above.

As for the "�ne technology{related tuning," pipeline organization rep-
resents one good example. Typically, pipeline organization is determined
through a trade{o� between instruction fetch time and data path time. Ele-
ments of instruction fetch time are: (1) address propagation time, (2) mem-
ory access time, and (3) instruction propagation time. Elements of data

2This paper assumes that advances in GaAs technology are not followed by adequate
advances in the packaging and interconnection tehnology.

3In the rest of the text, when we say GaAs, we mean GaAs or any other technology
with the same or similar characteristics.



V. Milutinovi�c: Catalytic migration: a strategy for creation ... 219

path time are: (1) concurrent reading of two operands from the register �le,
(2) signal propagation through the ALU, and (3) writing of the result into
the register �le. In silicon, for modern CPU designs with an on{chip instruc-
tion cache, the ratio of instruction fetch time to data path time is usually
equal to one or smaller. Consequently, the elements of data path time are
pipelined, which results in the so{called CPU pipelines of depth typically
equal to 2,3, or 4. In GaAs, with an o�{chip instruction cache, the ratio of
instruction fetch time to data path time is almost always larger than one.
Consequently, the elements of instruction fetch time are pipelined, which
results in the so{called memory pipelines of depth typically equal to 2, 3 ,
or 4 (this does not say that instruction fetch pipelines cannot be found in
silicon4 microprocessors).

With regard to the "algorithmic re{evaluation," adder design represents a
good example. There exist many ways to implement an adder [e.g., 11]. They
range from the ripple{carry adder (which is treated as the slowest and the
least complex to implement) to the carry{look ahead adder (which is treated
as the fastest, and the most complex to implement), with a number of other
solutions that fall in{between (according to the speed and the complexity of
implementation). Actually, the above statements about the speed imply a
performance evaluation model in which all gates have the same delay (which
does not depend on the fan{in and fan{out of that particular gate), and that
wire delays are negligible. These assumptions do not hold in GaAs! In a
previous paper [12], we compared a number of di�erent adders, using a model
which re
ects the di�erences between GaAs and silicon. It was found that,
for word lengths of up to about 16 bits, ripple{carry adder may be the fastest.
For larger word lengths, it will not be the fastest adder, but it may still be
the most appropriate one to use in a 32{bit GaAs microprocessor, because
it takes the least VLSI area. The saved VLSI area could be "invested" in
the resources that have been proven useful in "�ghting" with large o� chip
delays. In other words, the ranking of the "appropriateness" of di�erent
adders is di�erent for GaAs (compared to silicon).

Solutions presented so far have enabled successful implementations of sev-
eral 32{bit GaAs microprocessors on a single chip [13, 14, 9], but have not

4Note that computer systems of the 60's (semiconductor CPU and core memory) are
also characterized with a large ratio of instruction fetch time and data path time, similarly
as in the computer systems of the 80's (GaAs CPU and GaAs memory). However, there
is one important di�erence: In the 60's, the memory access time (element #2) was much
larger than the other two elements, address propagation time and function propagation
time (elements #1 and #3). In the 80's it was the opposite. Consequently, solutions
typically used in the 60's and the 80's are di�erent (interleaved in the 60's and pipelined
memory in the 80's).



220 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

contributed much to achieving the desired speed{up of N . Therefore, the
researchers had to investigate other possible approaches5. One possible ap-
proach is presented next.

4. Catalytic migration

The approach proposed here is referred to as catalytic migration, and its
essence is best explained through a comparison with the concept of direct
migration. Therefore, direct migration will be explained �rst, followed by
catalytic migration.

Direct migration implies that an entire resource is moved from hardware
to software. Such migration relieves transistor count which can be "invested"
into resources that have been proven useful in "�ghting" with large o�{chip
delays. Examples of direct migration can be found in RISC processors for
silicon technology. For example, in the Stanford University MIPS machine
[15], the pipeline interlock mechanism was migrated from hardware to soft-
ware [16]. In the Berkeley RISC machine, and several other machines, the
delayed branch control mechanism was migrated from hardware to software
[17].

Correct utilization of the direct migration principle can increase the e�-
ciency of GaAs systems. However, examples of direct migration seem to be
very di�cult to �nd. For that reason, our attention has turned to catalytic
migration. Catalytic migration is potentially less useful because (on aver-
age) the transistor count released through catalytic migration is less than
the transistor count released through direct migration. However, examples
of catalytic migrtion are much easier to �nd. In the case of catalytic migra-
tion, a relatively small piece of hardware (catalyst) is added to the processor,
which enables a much larger piece of hardware (migrant) to be migrated from
hardware to software. Before a catalyst was added, it was not possible (or
did not pay) to move the migrant from hardware to software.

The whole concept can be placed into a more general context. First,
as indicated above, the role of the catalyst can be to enable the migration
which is otherwise not possible. This type of migration is referred to as
inductory catalytic migration. Second, migration may be possible even be-
fore the catalyst was added, but the addition of the catalyst increases the
e�ciency of migration. This type of migration is refered to as acceleratory

catalytic migration. In principle, there are two subcases of acceleratory cat-

alytic migration. In the �rst subcase, the term e�ciency refers to the speed

5"Fighting" the large o�{chip delays is the major reason for turning to software
(compile{time optimizations), but not the only reason.



V. Milutinovi�c: Catalytic migration: a strategy for creation ... 221

of compiled HLL code. In the second subcase, the term e�ciency means
that the optimizing compiler is less di�cult to generate (but the speed of
compiled HLL code may not necessarily improve). The �rst subcase is re-
ferred to as execution{oriented, and the second subcase is referred to as
compilation{oriented.

Elements of the above strategy can be found in the past work of others [1,
15]. However, initial similarities are limited only to the issues which are of
a secondary nature for the strategy presented here. For example, the paper
[18] points to the synergistic e�ects that could be created through interaction
of the architecture and the optimizing compiler. In the paper that follows
[19], the authors introduce the concept of integration as an approach that is
potentially useful for GaAs microprocessors. Also, in some optimizing com-
pilation related work, it was indicated that the code optimization problem
could be more easily solved if some kind of hardware "help" is available [20,
21].

On the other hand, some of the solutions employed in modern micropro-
cessors [22] can be treated as examples of catalytic migration, in a very wide
sense. The authors of these solutions did not create them by trying to fol-
low the guidelines of the strategy presented here. They simply got an idea
that improves the e�ciency of their microprocessor, and they implemented
it. Obviously, catalytic migration can be useful in the silicon environment
as well, but it yields the best results in the environment of GaAs, or similar
technologies.

5. Examples of catalytic migration

Three examples of catalytic migration will be brie
y described here.
Other examples can be developed, too. However, the intention of this paper
is not to provide an exhaustive list of catalytic migration examples, just to
illustrate the concept. Further catalytic migration examples are the subject
of a follow{up paper.

5.1 Catalitic migration example #1

The GE (RCA) GaAs RISC machine [9] uses the so called "hand{walking"
solution to solve the problem of "scrambled load," typical of the multi{
distance main memory (which can not be avoided in GaAs computer sys-
tems). The essence of the problem, and the "hand{walking" solution, is
as follows (see Figure 1). In silicon, the worst case access time determines
the value of the memory cycle. In GaAs, due to a relatively large ratio of
o�{chip to on-chip communication delays, this strategy makes no sense.



222 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

Figure 1. Example of an Inductory Catalytic Migration:
(a) Before migration (migrant shaded);
(b) after migration (catalyst shaded).
IR: Instruction register.
ADR: Address of the destination register for LOAD instructions.
AM : Memory address for LOAD instructions.
Mi: Multidistance memory at distance i (i = 1; 2; : : : ).
DM : Data from memory, for LOAD instructions.
GRF : General register �le.
DU : Delay unit which determines how long to keep ADR
away from the general register �le.

Consequently, systems are designed with a multi{distance main memory,
i.e. di�erent parts of main memory have di�erent access times. One of the
problems with this is that a load from a distant memory, immediately fol-
lowed by a load from a non{distant memory, may result in swapping of data
between two registers, if a traditional register load design is used (destina-
tion register address sent directly from the instruction register to the address
input of the register �le). Actually, the later load from a non{distant mem-
ory may bring in the data item (from memory) sooner than the former load
from a distant memory. With the above "traditional register load design,"
data would end up in wrong registers. One way to avoid this problem is by
including one more bus in the system, a bus that would propagate the above
destination register address to and from the main memory. This enables



V. Milutinovi�c: Catalytic migration: a strategy for creation ... 223

the destination register address to propagate to the main memory together
with the load address, and back together with the load data. Consequently,
data related to two successive loads can not be swapped. This technique is
referred to as "hand{walking." In principle, the "hand{walking" bus can be
migrated into software, in which case the optimizing compiler would "shuf-

e" the instructions around the load instructions, in order to move the load
instructions far enough apart. When this is not possible, NOOPs would be
inserted [16]. Unfortunately, in a typical programming environment, there
is not enough static information available at compile time. The solution
which goes along the guidelines of the catalytic migration approach implies
the incorporation of a "small" piece of hardware (catalyst, shaded in Figure
1b), which would make sure that the rest of the relevant information be-
comes available at run time. In other words, the added piece of hardware,
controlled by the code in execution, would enable the destination register
address to stay away from the register �le address input for the time which
is exactly as long as needed (i.e., to be delayed as long as needed). Conse-
quendy, the destination register propagation bus will be eliminated (migrant
shaded in Figure 1a). This solution can be treated (conditionally6) as an
example of inductory catalytic migration.

Figure 2. Example at an Execution{Oriented Acceleratory Catalytic Migration:
(a) Before migration (migrant shaded);
(b) After migration (catalyst shaded).
WRF (N): Windowed register �le (with or without overlapping)
with N windows.
M : Memory
WRF (2): Reduced windowed register �le (with or without overlapping)
with 2 windows.
CW : Current window
BW : Back{up window
DMA: Direct memory{access
L: Number of bits transferred by DMA in each DMA cycle (L = 1; 2; : : : )

6This example contains also elements of other catalytic migration approaches.



224 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

5.2 Catalytic migration example #2

The Berkeley RISC machine contains an overlapping windowed register
�le, with N windows inside the CPU (see Figure 2). Even without the
incorporation of a catalyst, a subset of these windows could be migrated
from hardware to software. This can be done simply by letting the soft-
ware maintain a subset of windows in the main memory. One way to make
this migration more e�cient in terms of the speed for compiled HLL code
is to incorporate a "small" catalyst in the form of a bit{serial DMA chan-
nel (shaded in Figure 2b). In this way, up to N � 2 overlapping windows
(migrant, shaded in Figure 2a) can e�ciently be migrated away from the
CPU. Of the remaining two windows, one would serve as the "current" win-
dow, and the other one would serve as the "back{up" window. While the
execution of the "current" procedure runs from the "current" window, the
local variables (and other relevant parameters) of the "previous" procedure
would be saved into the main memory through an L{bit{serial (L = l; 2; : : : )
DMA transfer, and vice versa. The L{bit{serial DMA transfer is fast enough
for these purposes, since the number of local variables (and other relevant
parameters) is typically relatively small, and the DMA transfer time is very
likely to take less time than the time to execute the "current" procedure
from the "current" window. Data integrity is ensured via appropriate hard-
ware. This is (conditionally7) an example of execution{oriented acceleratory

catalytic migration.

5.3 Catalytic migration example #3

The GE (RCA) GaAs RISC machine [9], as well as some other GaAs
machines which are now in the works, do have a relatively deep memory
pipeline. If there exists no hardware interlock for delayed branching, the
optimizing compiler will have to �ll in the branch delay slots with other
useful instructions, plus NOOPs, if the depth of the delayed branch slot is
larger than the number of useful actions that can be found. The deeper the
pipeline, the larger will be the percentage of NOOPs in the compiled HLL
code. One way to ease this problem is to employ global rather than local code
optimization techniques. However, this approach would make the optimizing
compiler much more di�cult to implement. Another way, which would make
the optimizing compiler more e�cient, without making it more di�cult to
implement, is deseribed here brie
y. If two independent modules can be
found, each can serve as a source of branch �ll{in instructions for the other
one, which would (approximately) double the number of useful instructions

7This example contains also elements of other catalytic migration approaches.



V. Milutinovi�c: Catalytic migration: a strategy for creation ... 225

that a "local" code optimizer would be able to �nd8. However, for this to
happen, a "small" catalyst would have to be added, in the form of some
registers and control mechanisms duplicated (e.g., each of the two modules
would have to have its own "minimal" register �le acting like a catalyst).
In conclusion, this solution makes it easier to build an optimizing compiler
for a given level of branch delay �ll{in success ratio. The approach could be
extended to n independent modules. This solution represents (conditionally)
an example of compilation{oriented acceleratory catalytic migration.

Figure 3. Example of a Compilation{Oriented Acceleratory Catalytic Migration:
(a) Before migration (migrant shaded).
aa) General register �le (GRF ).
ab) Execution trace of module A.
ac) Code of module A: BDF : Branch delay �ll{in;

X: Un�lled part of delayed branch.
(b) After migration (catalyst shaded).
ba) Two general register �les, one for module A, the other for module B.

S(GRF ) is a subset of general register �le.
bb) Execution traces for modules A and B.
bc) Code of module A, with sections of module B used to �ll

in the delayed branch slots in module A.

6. Performance evaluation

Performance evaluation is a critical issue for any new concept. This is
true for catalytic migration, as well. Not every example of catalytic mi-
gration is useful. Unfortunately, it can be extremely di�cult to determine
precisely if an example of catalytic migration really speeds up the execution

8Eliminated NOOPs (indicated with � in Figure 4a) can be conditionally treated as
a migrant.



226 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

of the compiled HLL code (or whatever else is the criterion of e�ciency),
and for how much. Fortunately, functional description languages (like ISP'
or VHDL), and good standard{cell placement and routing programs (like
MP2D or TANNER) can be very useful.

In this paper, �rst the basic performance and cost/performance evaluation
guidelines are given. After that, the results are shown for the application of
the same guidelines to the three examples mentioned above.

Figure 4. Relative speed{up of the compiled code, assuming that the area saved by
catalytic migration was used to increase the number of registers.
S Code speed{up
NR Initial number of registers, before migration
Ki (i = 1; 2; 3): Additional number of registers due to area savings because

of the utilization of catalytic migration.
This �gure assumes that the ratio of of{chip to on{chip delays
is as in [HelMil89], which is one instruction after one cycle
(for cache hit), and one instruction after three cycles (for cache miss).

6.1 General discussion

The �rst issue is to determine the amount of VLSI area (or transistor
count) which is released by catalytic migration under consideration. Ob-
viously, the released VLSI area is equal to the di�erence of the area for
the migrant and the area for the catalyst. Consequently, it is important
to determine the area of the migrant and the area of the catalyst. An en-
gineering approach would be to come up with an RTL level design of both
resources, and then to estimate the layout area, using analytic, simulation or
implementation tools. This approach is design{dependent, as well as tech-



V. Milutinovi�c: Catalytic migration: a strategy for creation ... 227

nology dependent. Consequently, methods have to be explored that enable
the determination of some kind of lower and upper bounds. The design and
technology related choices (silicon vs GaAs, custom vs standard{cell, etc.)
can be treated as parameters of the analysis.

The second issue is to determine the amount of the on{chip "delay �ght-
ing" resource that could be created on the above mentioned saved VLSI
area. One possible simpli�cation is to assume that the saved VLSI area
would be invested into adding more registers, assuming that, before the mi-
gration the number of CPU registers is equal to NR (NR = 0; 1; 2; : : : ). Of
course, the lower the initial number of registers, the larger will be the e�ect
of catalytic migration. Consequently, a dependency function can be created.
At one point, the function will have a "cut{o� point" beyond which this
particular type of "investment" does not make much sense any more. Of
course, the "cut{o� point" is dependent on the quality of the optimizing
compiler, which makes the problem fairly complex and di�cult for a "pre-
cise treatment." This opens up the next issue of importance, which is the
hardware{to{software migration algorithm to be employed at compile time.

The third issue is the choice of the code optimization algorithm to be used
for migration purposes. One approach is to work with the existing compila-
tion technology [e.g., 16], in which case the performance evaluation results
could be treated as the lower bound. The other approach is to introduce
novel algorithms.

The �nal issue is benchmarking (or tracing). In other words, a repre-
sentative set of benchmarks (or traces) has to be run through the system,
both before and after the migration, in order to determine the e�ects of the
migration, for various values of parameter NR. What makes this approach
di�cult is the selection of representative benchmarks (traces), for the given
application �eld.

Once a set of curves (dependency functions) is generated (speed{up versus
initial number of registers), for di�erent values of the chosen parameters,
designers of future machines should be able to make appropriate decisions.

6.2 Performance estimation

A simulation experiment based on the ENDOT package was created to
demonstrate the potential advantages of the three migration examples, for
the case of the GE (RCA) 32{bit 200 MHz RISC machine [9]. For each
example, a solution was assumed which releases certain transistor count that
becomes available for the implementation of additional registers. The goal
was to determine the performance improvement related only to the register
count increase. The number of registers before migration was assumed to



228 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

be NR (NR = 1; 2; : : : ), and the register count increase was found to be
K1;K2; and K3 for the �rst, second, and third catalytic migration example,
respectively.

Initial ENDOT simulator of the GaAs machine [9] was modi�ed in order
to re
ect the above modi�cations. After that, a large predominatly numeric
test program (which closely corresponds to a sponsor application) was exe-
cuted on the ENDOT simulator, and relevant simulation data were collected.
These data are given in Figure 4, for one speci�c set of values for K1;K2

and K3. Values of K1;K2 and K3 are design dependent, and their inter{
relationship can vary with the design. For the design used in the speci�c
experiment of Figure 4, it was K1 < K3 < K2. Note that the value of K3 is
also dependent on the program characteristics and the optimizing compiler
characteristics.

The curves in Figure 4 demonstrate that the e�ects of catalytic migration
(related to designer's ability to put more registers on the chip) are larger
for technologies with the limited transistor count on the chip, since (in that
case) the initial number of registers (NR) is smaller. The curves in Figure
4 also demonstrate that positive e�ects of catalytic migration can be fairly
large.

7. Conclusion

This paper explains the rationales behind the concept of catalytic mi-
gration, it brie
y discusses existing types of catalytic migration (through
representative examples), and sheds some light on the related performance
evaluation.

The role and importance of catalytic migration should not be misunder-
stood. It is applicable to both silicon and GaAs; however, the smaller the
chip size and the larger the ratio of o�{chip to on{chip delay, the better is
the potential performance improvement due to catalytic migration. In other
words, it is potentially advantageous not only for GaAs, but for any other
technology which has large o�{chip to on{chip delay ratio.

Also, catalytic migration is not to substitute for other possible approaches,
but to complement them. For example, if the level of integration of GaAs
chips reaches some fairly large number (e.g., one million transistors on a
single chip), catalytic migration will not become obsolete at that time. The
problem here is how to achieve the speed{up which is made possible by the
technology. Putting more cache memory on the chip will help improve the
absolute speed, but the technology{related speed{up could be approached
only if the principles of catalytic migration are applied �rst.



V. Milutinovi�c: Catalytic migration: a strategy for creation ... 229

In conclusion, one of the challenging research topics now is the creation
of new and better examples of catalytic migration, as well as the methods
for a reliable cost/performance evaluation, prior to implementation.

Ackowledgements

The author is thankful to S. Lakhani and P. Chow for the help related to
the ENDOT simulation package.

REFERENCES

1. Patt Y.N.: Real Machines: Design Choices and Engineering Trade{O�s. IEEE
Computer, January 1989, pp. 8{10.

2. Karp S., Roosild S.: DARPA, SDI, and GaAs. IEEE Computer, October 1986,
pp. 17{19.

3. Gilbert B.K., Naused B.A., Schwab D.J., Thompson R.L.: Signal Proces-
sors Based Upon GaAs ICs: The Need for a Wholistic Design Approach. IEEE
Computer, October 1986, pp. 29{44.

4. Milutinovi�c V., Fura D., Editor: Tutorial on GaAs Computer Design. IEEE
Computer Society Press, 1989.

5. Milutinovi�c V., Editor: Microprocessor Design for GaAs Technology. Prentice{
Hall, 1990.

6. Mudge T.: GaAs Microprocessor Design at the University of Michigan. Internal
Report, Ann Arbor, Michigan, November 1988.

7. Fouts D.J., Johnson J.M., Butner S.E., Long S.I.: System Architecture of a
Gallium Arsenide One{Gigahertz Digital IC Tester. IEEE Computer, My 1987.

8. McDonald J.F., Greub H.J., Steinvorth R.H., Donlan, B.J., Bergendahl
A.S.: Wafer Scale Interconnections for GaAs Packaging: Applications to RISC
Architecture. IEEE Computer, April 1987, pp. 58{70.

9. Helbig W., Milutinovi�c V.: A DCFL E/D MESFET GaAs Experimental RISC
Machine. IEEE Transactions on Computers, February 1989, pp. 263{274.

10. Milutinovi�c V., Fura D., Helbig W.: An Introduction to GaAs Microprocessor
Architecture for VLSI. IEEE Computer, March 1986, pp. 30{42.

11. Hwang K.: Computer Arithmetic. Wiley, 1979.

12. Milutinovi�c V., Bettinger M., Helbig W.: Adder Design Analysis for a 32{
Bit GaAs Microprocessor. IEE Proceedings, Part E, 1989.

13. Rasset T.L., Niederland R.A., Lane J.H., Geideman W.A.: A 32-bit RISC
Implemented in Enhancement{Mode JFET GaAs. IEEE Computer, October 1986,
pp. 60{68.

14. Fox E.R., Kiefer K.J., Vangen R.F., Whelen S.P.: Reduced Instruction Set
Architecture for a GaAs Microprocessor System. IEEE Computer, October 1986,
pp. 71{81.

15. Hennessy J.: The MIPS Machine. Digest of Papers, Spring COMPCON 82, San
Francisco, February 1982, pp. 2{7.



230 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

16. Gross T.: Code Optimization of Pipeline Constraints. Technical Report, No. 83{
225, Stanford University, December 1983.

17. Katevenis M.G.H.: Reduced Instruction Set Computer Architectures for VLSI.
Technical Report, No. UCB/CSD 83/141 , University of Califomia at Berkeley,
October 1983.

18. Milutinovi�c V., Fura D., Helbig W., Linn J.: Architecture/Compiler Syner-
gisms in GaAs Computer Systems. IEEE Computer, May 1987, pp. 72{93.

19. Dietz H., Chi C.H.: A Compiler{Writer's View of GaAs Computer System De-
sign. Proceedings oj the 21-st Annual Hawaii International Conference on System
Sciences, Kona, Hawaii, January 1988, pp. 256{265.

20. Katz R.: Implementation of VLSl Systems. Technical Report, No. UCB/CSD
86/259, University of California at Berkeley, September 1985.

21. Chow F.C.: A Portable Machine{Independent Global Optimizer: Design and Mea-
surements. Technical Report, No. 83{254, Stanford University, December 1983.

22. Gimarc C., Milutinovi�c V.: A Survey of RISC Processors and Computers of
the Mid{1980s. IEEE Computer, September 1987, pp. 59{69.


