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NON{PARAMETRIC IDENTIFICATION

OF THE GLASS FIBER DRAWING PROCESS

Stevan Milinkovi�c

Abstract. Optical �bres, together with light sources and detectors, play a key
role in telecommunication systems. One of the factors a�ecting the transmis-
sion losses of the �bre and its tensile strength, is the diameter uniformity which
is directly related to the drawing process. A high degree of diameter uniformity
in the �ber drawing process is achieved by an appropriate construction of the
drawing machine and by applying an optimal system for the control of the di-
ameter. Optimization of such a control requires prior structural identi�cation
of the drawing process and its parameters. In this work, a nonparametric iden-
ti�cation of the drawing process has been done. The cross-correlation method
has been used, with a random noise as the input signal. The obtained trans-
fer function is a second-order one with real poles, which accords well with the
theoretical assumptions. Identi�cation of the drawing mechanism and �bre di-
ameter measurement system, which contains a signi�cant dead time, has also
been done. The results obtained can be used for the synthesis of the optimal
control function.

1. Introduction

Optical �bre drawing is a well{established technological process, thor-
oughly covered in the literature [1]. In short, optical �bers are produced by
heating one end of a cylindrical glass rod (preform), followed by drawing
of the melted part which is, at �rst rapidly and then more slowly, narrowed
during cooling. Temperature changes are in the range of hundreds of degrees
along the distance of only a few millimeters.

The main elements of the drawing process control system are: a sensor
for measuring �bre diameter, located at a certain distance from the drawing
zone, the appropriate electronic system and the electromechanical system
of the drawing mechanism. The remaining elements of the system, like the
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preform feeding mechanism or the temperature of the heater, are rarely
included in the control process because of their long time constants.

Drawing of optical �bres is a process that can be easily described qual-
itatively. However, it is a very complex problem of uid dynamics, which
includes an enormous change in viscosity. As a result, the process is suscep-
tible to disturbances, especially at higher drawing velocities, which leads to
its instability. Stability of the process has been studied from three aspects:
1) stability at sudden disturbances, when a �bre rupture can occur, 2) sta-
bility related to the drawing conditions and examining the resonant e�ects
and 3) dynamic behavior at small input signals, aimed at �nding an optimal
solution for the process control.

In a limited sense, process identi�cation requires knowledge of its model's
structure. A mathematical model is often based on the equations derived
from the fundamental laws of physics. For the optical �ber drawing process,
these are the Navier{Stokes and the heat transfer equations [2]. Since these
equations are non{linear, most authors linearized them using the perturba-
tion analysis. Thus, various drawing conditions have been examined, mainly
by numerical solving of the equations of linearized models.

Many authors studied the stability in the process of nonisothermal draw-
ing [3]. Their work is characterized by the simpli�ed energy equations. The
more complete analysis, which took into account all modes of heat trans-
fer, was done by Paek and Runk [4] and Geyling and Homsy [5]. The heat
transfer, and mathematical and numerical models of temperature pro�les
were studied by Dianov et al. [2]. They also analyzed the stability of draw-
ing in time domain, by solving the Navier{Stokes equations numerically. As
the boundary conditions, they were using the disturbances which correspond
to the changes in temperature, drawing velocity etc. In this way, by using
the numerical simulation, they obtained the impulse responses and transfer
functions of �ber diameter, related to the various input parameters. Myers
[6] developed the mathematical model of the drawing process even further,
by using the radiation model of heat transfer. By solving the perturbation
equations numerically, Myers obtained the frequency response for the �ber
diameter as a function of the change in drawing velocity. In addition, he
tested the system excited with a sine wave perturbation at three di�erent
frequencies.

Purely experimental identi�cation was done by Smithgall [7], who used
the Fourier �ltering technique for determination of amplitude and phase
responses of the process. Although the process is highly non{linear, these
techniques are used primarily to obtain linear model for control purpose.

This work contains a theoretical background and an experimental veri�ca-
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tion of a method for the identi�cation of the �ber drawing process, a method
which can be applied without halting or even disturbing the process.

2. Selection of the test signal and identi�cation method

The chosen method was an identi�cation of continuous{time model via
non{parametric form. This is an indirect approach in which linear dy-
namical system is �rst modelled in terms of non{parametric descriptions
such as impulse response, step response, and frequency response functions.
Continuous-time parametric model could be then �tted to the non{paramet-
ric form. Several methods are available for identi�cation of non{parametric
models. Deterministic test signals such as step, saturated ramp, block pulse,
etc. give rise to time{domain methods of estimation of impulse response
function, step response function, etc. Use of random noise signals in the
framework of correlation methods meets stochastic situations. The deter-
ministic time{domain methods are based on deconvolution. The frequency
domain methods also have their deterministic and stochastic versions. The
frequency and time domain methods are recognized to be complementary
rather than rivalling. Nonparametric models from one domain can be trans-
formed into the other with the help of certain inter{domain transformation
formulae [8].

Transfer function can be obtained from non{parametric models in a num-
ber of ways. There is a class of methods in which certain salient features
in the step response function such as exion tangents, times to reach cer-
tain percentage values of the steady{state value, overshoot, etc., are directly
related to the parameters of transfer function in some standard form [9].
Fitting parametric data to measured frequency response is another viable
approach that has received considerable attention in the past.

The choice of a method of experimentation, the domain in which the
signals and models are to be handled, and the method to yield desired results
are often governed by the ultimate objectives and the conditions existing in
a situation.

The identi�cation methods in time domain applied in the theoretical anal-
yses, cannot be used in the case of �bre drawing process because of the
following:

� The step excitation function is not applicable because the process is not
linear, i.e., it would yield to exiting from the range of optimal stationary
conditions.

� Process in which no regulation is applied, is "weakly" oscillatory with a
very large oscillation period. Hence, it is di�cult to determine the new
stationary state after the step function has been applied.
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� In frequency domain, assuming that we are dealing with small signals,
i.e., that the process is in the linear range, the application of a sinusoidal
excitation signal would still not give the satisfactory results. There are
at least two reasons for this. The �rst is the existence of physical modal
frequencies which, after being provoked, produce resonant e�ects, thus
giving the false picture of the transfer function. The second reason is
the duration of measurement. Practically, the complete preform would
be used in order to measure only a few frequencies, because of the long
period of integration for frequencies of the order of 10�2 Hz.

The inevitable dead time of the diameter measurement system presents
a big problem in the determination of the phase characteristics of the �ber
drawing process. Potential solution for sinusoidal excitation is simultaneous
application of multiple sine waves, given as an ensemble.

Another class of test signals, known as binary noises, are excellent test
signals when applied to a suitable point of entry of an industrial process,
providing necessary plant excitation for process identi�cation. From an op-
erational point of view, binary noise is much more acceptable than a test
signal having non{constant amplitude such as an ensemble of sine wave sig-
nals. Moreover, since in the binary noise case the energy applied is more
or less evenly distributed over the frequency range of interest, the average
amplitude can be considerably smaller than when energy is concentrated in
a small number of frequencies associated with the ensemble. From a theo-
retical point of view such a multisine wave is attractive, since it is shown
to be optimal test (input) signal, when suitably chosen, for identi�cation of
linear processes [10]. This approach calls for detailed a priori knowledge of
process dynamics, as a number of test frequencies and associated amplitude
levels must be chosen properly. This obviously contradicts the essence of ex-
periment design, where a priori knowledge about the plant is very limited.

There is another practical disadvantage: as already mentioned before,
the optimal multisine wave signals concentrate their test frequencies at, or in
neighborhood of, natural frequencies since this is most informative. However,
plant operational sta� would not easily accept such a concentration of energy
being applied at such "critical" frequencies. In fact, in the process industry
it is preferred that control engineers apply binary noise excitation, i.e. the
test signal that should not a�ect the process itself. The best choice for the
test signal is white noise, because its power{density spectrum is constant.

Of course, any noise whose power{density spectrum is constant in a fre-
quency range that is much wider than the process bandwidth, may be con-
sidered as a physically realizable white noise.

The proposed process identi�cation technique has at least three advan-
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tages over conventional methods:

� Test can be performed during the normal operation of the system. It is
not necessary to stop the process or make some sort of special connection
to it. This is possible because the energy of the noise is distributed in
a wide frequency range, so its amplitude at speci�ed frequencies is very
small.

� The measurement is insusceptible to the inuence of an external unwanted
noise, providing that the test signal is not correlated with it [11].

� The presence of the inherent process energy does not a�ect the measure-
ment.
Being a broad{band (white) signal, with the following power density

�xx(!) = 2��2 (1)

and with autocorrelation function:

�xx(�) =
1

2�

Z +1

�1

�xx(!)e
j!�d! = �2�(�) (2)

this type of signal can be used for easy identi�cation of process transfer
function, G(j!), according to very well known formula [12]:

G(j!) =
�xy(j!)

�xx(j!)
=

�xy(j!)

2��2
(3)

where �xy(j!) denotes cross{spectral power density between the output and
input of the system.

The main drawback of this method is the physical realizability, since very
short and very intensive peaks could be contained in the signal. This draw-
back can be overcome by using a so{called pseudorandom noise which has a
limited amplitude, which prevents the disturbance of the process or entering
into a non-linear mode of operation. It has similar autocorrelation function
as the white noise (Dirac impulse), but periodic, with a period T . Therefore,
the autocorrelation function of the pseudorandom noise has a value 6= 0 at
times � = 0; T; 2T; 3T , whereas for all other values of � it is equal to zero.

When using this type of test signal, the cross-correlation function will be
[8]:

�xy(�) =
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0

g(s)�xx(� � s)ds+

Z 2T
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g(s)�xx(� � s)ds

+

Z 3T

2T

g(s)�xx(� � s)ds+ � � �

(4)



270 Facta Universitatis ser.: Elect. and Energ. vol. 10, No.2 (1997)

i.e.:
�xy = �2[g(�) + g(T + �) + g(2T + �) + � � � ] (5)

where g(t) is impulse response of the system with transfer function (3). If
T is chosen so that the impulse response drops to zero during the period
shorter than T , the equation (5) becomes:

�xy(�) = �2g(�) (6)

Naturally, the pseudorandom white noise is a pure mathematical �ction.
Therefore, its approximations are used instead. One of them is a pseu-
dorandom binary sequence (PRBS). Practically, it is a sequence of binary
signals with discrete amplitude which changes stochastically between its two
possible states (logical 0 and logical 1). PRBS has the following properties:

� The signal has two levels (�V ) and may switch from one level to the other
at certain intervals of time t = 0; �; 2� : : :

� Whether or not the signal changes level at any particular interval is pre-
determined. The PRBS is thus deterministic and experiments are repeat-
able.

� The PRBS is periodic with period T = N�, where N is an odd integer.
� In any one period, there are 1=2(N+1) intervals at one level and 1=2(N�
1) intervals at the other level.

It is well known that the frequency spectrum of such a "conventional"
PRBS is almost white in the frequency band of interest. It is, therefore,
generally regarded as an optimal test signal, since all relevant process fre-
quencies are tested with about equal power.

Consequently, in this way fast process characteristics are usually well
identi�ed, in contrast to the middle and the lower frequency characteristics
of the process involved (slower transients and stationary gain). Of course,
binary noise can be manipulated in such way that more energy is placed at
middle and lower frequencies. An obvious way to realize this [13] follows from
the choice of enlarged basic switching time TE = MT , which is a multiple
M(M = 2; 3; : : : ) of the standard basic switching (sampling) time interval
T . Although test signal energy is shifted towards the lower frequencies as M
increases, an important drawback is hidden behind this short-cut approach.

Since we are interested in frequencies over the whole range [0; �=T ] it is
not possible to excite frequencies greater than ! = 2�=(MT ) because the
basic switching time is TE =MT .

However, if we change the switching probability of binary noise (instead
of being 0.5) to the smaller values (e.g. 0.2), then we can obtain smoother
spectrum with enough energy at the lower and middle parts.
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3. Experimental results

3.1 Process identi�cation system

From system theory it is known that the linear system is completely char-
acterized by its impulse response. The Laplace transform of the impulse re-
sponse function is called transfer function of the system. Since there exists
a unique relation between both the time{ and frequency{domain represen-
tation, the impulse response can be obtained from measurements in both
domains.

Figure 1. Fiber drawing mechanism and measurement system:

1. Preform feeding mechanism; 2. Preform lowering speed controller;

3. Furnace; 4. Laser diameter measuring system; 5. Capstan drive;

6. Drawing speed controller; 7. Signal analyzer; 8. Winding drum.

The Fourier transform of the impulse response function is called the fre-
quency response. In practice, most instruments use frequency domain ap-
proach because this results in a higher signal{to{noise ratio. In the begin-
ning, these measurements were made frequency{by{frequency, but in the
late seventies, fast Fourier transform (FFT) analyzers appeared on the mar-
ket making it possible to measure the frequency response at a large number
of frequencies at once.
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One of such an instruments is Hewlett Packard HP3562A dynamic ana-
lyzer. It contains high-speed Fourier transform processors, realized in hard-
ware, providing a capability for correlation function calculations. The pro-
gramming feature of the analyzer allows the creation and running of so{called
"waveform math sequences", enabling very comprehensive calculations. An-
other advantage is the built{in source of continuous Gaussian noise, which
may be considered as white noise in the frequency band up to 100 kHz. In
contrast to high sample{rate PRBS, continuous noise has an adequate am-
plitude to excite the drawing process, and therefore does not need to have
the lower part of its spectrum emphasized.

Figure 1. shows the measuring system for identi�cation of the parameters
of the drawing process and determination of the drawing mechanism transfer
function. Electromotor/tachometer was used as a driving system both for
the preform feed mechanism and the �ber drawing mechanism. For the
velocity control, two classical analog controllers were made and additionally
stabilized with a tachometer feedback loop. At the output of each controller,
there is a power ampli�er with a built{in electronic brake, which enables the
accuracy of the velocity control to be better than 1% in the whole measuring
range. Both controllers contain inputs for remote adjustment of the set point.

3.2 Transfer function of the motor and the drawing mechanism

The drawing mechanism can be a tractor (two pinched disks, one of which
is connected to the motor), or a drum on which the �ber is automatically
wound. The motor was connected to the tractor by an 1:60 reductor, and the
diameter of the tractor disk was 19 cm. Due to the high degree of reduction,
it can be considered that the motor is operating virtually with no load.

Figure 2. illustrates the frequency response of the described mechanism
with the regulated velocity. By using the �tting algorithm from the analyzer,
the monotonous, second{order function with the separated real poles was
obtained:

Gt(s) =
3

(s+ 6:3)(s + 19:58)
(7)

If it is necessary to use the drawing mechanism with a drum (which is usu-
ally the case when drawing and spinning a number of �bres simultaneously),
the dynamics is somewhat di�erent.

Figure 3. shows the recorded frequency response of the drawing mecha-
nism using a plastic drum with diameter of 15 cm and weighing 430 g. By
�tting the transfer function we obtain:

Gdp(s) =
s+ 208

(s+ 146)(s + 417)
(8)
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Figure 2. Frequency response of the drawing mechanism with tractor.

Figure 3. Frequency response of the drawing mechanism with a plastic drum.
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Figure 4. Frequency response of the drawing mechanism with a metal drum.

If a metal drum with the diameter of 31.8 cm and weighing 5.3 kg is used,
the rise of frequency response in the vicinity of 2 Hz is observed (Figure 4.);
it is attributed to the lower e�ciency of the electronic brake in the regulator,
due to the relatively heavy drum. In this case, the transfer function is:

Gdm =
(s+ 0:7)(s + 17)

(s+ 8:3)(s+ 128)(s + 729)
(9)

3.3 Transport delay of the diameter measuring system

Identi�cation in the presence of unknown time{delays is generally agreed
to be a di�cult problem. There are di�erent methods for accomplishing this
goal [14]. Here, two of them are exploited, and both are non-parametric,
cross{correlation based techniques.

PRBS excitation

Consider a glass �ber drawing process described by the discrete model:

A(q�1)r(k) = q�dB(q�1)u(k) + �(k) (10)

where
A(q�1) = 1 + a1q

�1 + � � � + anq
�n (11)
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B(q � 1) = b0 + b1q
�1 + � � �+ bmq

�m (12)

and where u(k) is the deviation of the drawing velocity, r(k) the deviation
of the �ber radius, �(k) the random disturbance signal, and q�i the delay
operator of i sampling periods. Let b0 6= 0 and let an unknown transport
delay, d � 0, be an integer multiple of the sampling period. u(k) and �(k)
are stationary, ergodic random processes with the mean value of zero. By
multiplying equation (10) with u(k � t), where k; t 2 Z, and by �nding the
mathematical expectation, the following function is obtained:

�ru =

nX
i=1

ai�ru(t� i) +

mX
i=0

bi�uu(t� d� i) + ��u(t) (13)

where the autocorrelation function �uu(t) and the cross-correlation functions
�ru(t) and ��u(t) are de�ned as:

�uu(t) = Efu(k)u(k � t)g

�ru(t) = Efr(k)u(k � t)g

��u(t) = Ef�(k)u(k � t)g:

(14)

Let the deviation of the �ber drawing velocity be a discrete white noise
with the variance �2u, which is uncorrelated with the disturbance signal, i.e.
��u(t) = 0. Its autocorrelation function is:

�uu(t) =

�
�2u t = 0

0 t 6= 0
(15)

By substituting (15) in equation (13) it is directly obtained that:

�ru(t) = 0; t < d

�ru(t) = b0�
2
u 6= 0; t = d

(16)

This means that the cross-correlation function �ru(t) positively equals

zero in the range from t = 0 to t = d� 1. Let d̂ be an estimate of the delay

d (d; d̂ 2 Z). It will be assumed that

�ru(t) = 0; t < d̂

�ru(t) 6= 0; t = d̂:
(17)
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According to [15], from the equation (17) the transport delay can be found
by evaluating the cross{correlation function on the basis of the N recorded
data:

�̂ru(t) =
1

N

NX
k=1

r(k)u(k � t); t = 0 : : : dmax (18)

where dmax is the maximal expected value of the transport delay. Conse-
quently, the following criterion is applied:

j�̂ru(t)j < " t < d̂ (19)

or equivalently:

j�̂ru(d̂)j >> maxfj�̂ru(t)j; t = 0; : : : d̂� 1g (20)

where " is an arbitrary small positive number. The moment when the cross-
correlation function starts to increase steeply over the noise level marks the
pure transport delay of the system, � . It is calculated as � = d�T , where d
is an unnamed integer obtained from equation (15), and T is the sampling
period in seconds.

Figure 5. Experimental cross{correlation function with PRBS excitation.
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Obtained cross{correlation function is shown in Figure 5. The delay can
be estimated directly by observing the diagram, at the crossing of the two
dashed lines. However, obtaining this result by using the equations (19)
and (20) is not so easy, because the function is very "noisy". Such a high
amplitude of the cross-correlation function, in the region where it should be
zero, is due to the signi�cant low-frequency content of the applied PRBS.
From Figure 5., it can be seen that the delay is 400 ms.

Continous noise excitation

In the second type of experiment, again an advantage was taken of HP
3562A dynamic analyzer. Random noise was superimposed on the DC signal,
and an experiment was carried out in an equivalent way to that in the case
of PRBS. The cross-correlation function (Figure 6) was obtained by taking
256 linear averages over a 2.048{ second time interval. The presence of noise
was mainly due the quantization e�ect of the laser measuring device. This
noise could be reduced by increasing the variance of the excitation signal, or
by using of an appropriate �ltering technique.

Figure 6. Experimental cross{correlation function with continuous noise excitation.

3.4 Transfer function of the drawing process

Figure 7. shows the frequency response of the drawing process obtained
by using the described measurement method, on the apparatus shown in
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Figure 1. With the obtained data, the synthesis of the transfer function
related to the drawing process and diameter measurement system was done.
Then, transfer function is:

Gp(s) =
0:01e�0:4s

s2 + 0:816s + 0:118
(21)

The transfer function (21) can be written in a more general form as:

Gp(s) =
Ke��s

(T1s+ 1)(T2s+ 1)
(22)

where vf is the drawing velocity, L is the furnace length and the time con-
stant T1 � L=vf , i.e., it is proportional to the hydrodynamic properties of
the system. The second time constant is proportional to the thermal prop-
erties of the system, i.e., T2 � mCp=k, where m is a mass of the molten
glass, Cp - speci�c heat and k - heat transfer coe�cient [16]. The obtained
frequency response shown in Figure 7, looks very much like the theoretical
curve which Myers [6] obtained by simulation.

Figure 7. The measured frequency response of the drawing process.
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4. Conclusion

Drawing of glass �bers is a complex process with the distributed param-
eters. Therefore, theoretical analyses usually start with developing the ade-
quate models and their subsequent simpli�cation and linearization. If rapid
acquisition of system parameters is needed, instead of detailed system analy-
sis, the system could be experimentally identi�ed. In case of the �ber draw-
ing process, conventional methods are unsuitable for such an identi�cation:
step function, because of the nonlinearity of the process, and swept or multi-
ple sine method, because of the resonant e�ects. Hence, the cross-correlation
method was used, enabling the undisturbed operation during process iden-
ti�cation. It is the best suited method since it is not restricted to model
assumptions and therefore it is easy to compute. Further advantage is low
sensitivity to uncorrelated disturbance noise, allowing higher sampling rate,
providing higher resolution of the estimate. The cross{correlation method
was also used for the evaluation of the dead time, i.e., the time between freez-
ing of the �bre and measurement of its diameter. Knowledge of the dead time
is important for the synthesis of a stable control system in a closed loop. The
transfer function describing the relation between �ber diameter and draw-
ing velocity was obtained. It is a second{order function with two real poles
and a transport delay caused by the measuring instrument. Which of these
poles is predominant, depends on the physical parameters of the drawing
process. In one case, the prevailing phenomenon is the heat transfer and in
the other, the uid dynamics. The proposed identi�cation method can be
applied directly in the plant by using commercially available device (such
is HP 3562A) for very fast changes of operating conditions - depending on
glass material, drawn-down ratio and required �nal �bre diameter.
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