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EFFECTS ON COMBINED IMPULSE AND GAUSSIAN

NOISE REJECTION WITH MEDIAN FILTER

ON BINARY DIGITAL RECEIVER PERFORMANCE

Vladimir Milo�sevi�c, Srdjan Kr�co and Vlado Deli�c

Abstract. The e�ect of impulse noise rejection with median �lter (MEF)

on binary digital receiver performance is relatively easy to estimate [1]. But,

problems arise if the real additive noise model is assumed in the channel analysis,

where, besides the impulse noise, Gaussian noise exists, too. In this paper we

have chosen a convenient additive noise model, calculated the error probability

as a function of all relevant model parameters and, �nally, estimated the e�ects

of combined impulse and Gaussian noise rejection with MEF on binary digital

receiver performance. We have shown that, by using MEF, one can signi�cantly

reduce the error probability of combined impulse and Gaussian noise and that

the value of error probability reduction factor depends on the area of dominant

in
uence of the particular noise component.

1. Introduction

There are two methods of noise suppression in digital communications:

one is to use error-correcting codes; the other is to apply some of the noise

rejection �lters in the receiver. The latter method has traditionally utilized

linear �lters and has been appropriate only for the additive Gaussian noise

rejection. However, incorporating a median �lter (MEF) [1], that belongs to

the class of discrete{time non{linear signal processors, the binary receiver

can also perform impulse noise rejection. The MEF has already been used

with success in speech and image processing [2], [3].

Using convenient mathematical models for each additive noise component

it is relatively easy to estimate e�ects of the use of a MEF on separate

impulse and Gaussian noise rejection [4], [5]. But, in real applications, both

noise components are present and it is impossible to estimate their combined

in
uence only by using separate models for each of them.
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The application of the MEF on the reduction of combined impulse and

Gaussian noise in binary digital receiver is analyzed in this paper. The e�ect

is described estimating the error probability ratio in a receiver with a MEF

to the error probability of the same receiver without a MEF.

2. Combined impulse and gaussian noise

Regarding the great complexity of calculating the error probability of

combined impulse and Gaussian noise, we have tried to �nd a convenient

noise model. So, a common model of additive noise [6] is chosen as

n(t) = ng(t) + ni(t) =

8<
: ng(t) +

KP
j=1

sjh(t� tj); K 6= 0

ng(t); K = 0;

(2:1)

where ng(t) is the Gaussian noise, ni(t) the impulse noise, K the number of

noise impulses, h(t� tj) an impulse disturbance at t = tj , and sj 2 f1;�1g

is its sign.

Of course, this model must include all the necessary parameters which

characterize both noise components and it has to be simple enough to enable

the estimation of error probability and the analysis of MEF e�ects.

The following assumptions are adopted:

a) each noise impulse amplitude is great enough in magnitude to cause a

decision error;

b) the time distribution of impulses within a single symbol interval T is

uniform;

c) the impulses are assumed to occur randomly, according to the Poisson

distribution

P�(j) =
(�T )j

j!
e
��T

: (2:2)

In the last expression, � represents the constant impulse density and �T

represents the average number of impulses in the symbol interval of length

T ;

d) the impulse length, expressed by the number of a�ected consecutive

samples, is a random variable, denoted by x, that follows the Rayleigh

distribution. This distribution ful�ls the limit conditions P�(x = 0) =

P�(x ! 1) = 0: So, the probability that the impulse is k samples long

is

P�(x = k) =
k

�2
e
�

k
2

2�2 ; � > 0; k = 1; 2; ::: : (2:3)



V. Milo�sevi�c et al: E�ects on combined impulse and Gaussian ... 221

The average impulse noise length n is, considering (2.3)

n = Efxg =
�
�

2

�1
2 �; (2:4)

e) the other additive noise component, i.e. Gaussian noise, is assumed to

have zero mean and variance �2.

3. Error probability

The following assumptions are also adopted:

f) the length of the symbol interval is T and there are N = T=T0 samples

in it, where T0 is the sampling period;

g) the receiver decides which of two waveforms has been transmitted on

the basis of observing a single sample, the one placed in the middle of the

symbol interval.

Considering these assumptions one can �nd that error probability is given

by

PE =

NX
j=0

P�(j)Pe(j); (3:1)

where P�(j) is the probability of occurrence of j impulses in symbol interval

T and Pe(j) is the error probability due to those j impulses. The latter

probability can be expressed as

Pe(j) =

NX
k=j

P
j

�
(k)P j

e
(k); j = 1; 2; :::; N ; (3:2)

where P j

�
(k) is the probability of occurrence of j impulses that a�ect a total

of k samples, during the symbol interval of length T . P
j

e
(k) is the error

probability due to those j impulses whose total length is k samples.

Using above equations we get

PE = P�(0)Pe(0) +

NX
j=1

P�(j)

NX
k=j

P
j

�
(k)P j

e
(k); (3:3)

where Pe(0) = Peg is the error probability due to Gaussian noise.

Probability P�(j) is, according to assumption c), given by (2.2). Since

the parameter �T has typical values f10�1; 10�2; 10�3; :::g it is obvious that

P�(1) >> P�(2) >> ::: >> P�(N): (3:4)
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According to the last expression we note that the probability that more

than one impulse occurs during a symbol interval is negligible. Now, the

error probability is

PE ~=P�(0)Peg + P�(1)

NX
k=1

P
1

�
(k)P 1

e
(k): (3:5)

Error probability due to the occurrence of one impulse, k samples long, is

P
1

e
(k) = P

1

ei
(k) +

�
1� P

1

ei
(k)
	
Peg; (3:6)

where P 1

ei
(k) is the error probability due to a k samples long impulse (ex-

plicitly de�ned later). From (3.5) and (3.6) the error probability is

PE = P�(0)Peg + P�(1)

NX
k=1

P
1

�
(k)P 1

ei
(k)

+ P�(1)

NX
k=1

P
1

�
(k)
�
1� P

1

ei
(k)
	
Peg:

(3:7)

The last equation shows that an overall error probability due to combined

impulse and Gaussian noise depends on

i) Gaussian noise only when there are no impulses in the symbol interval

T (the �rst member in (3.7);

ii) impulse noise only when an impulse occurs in the symbol interval T

and causes an error (the second member in (3.7);

iii) Gaussian noise when an impulse occurs in the symbol interval T , but

it does not cause an error (the third member in (3.7).

4. Application of MEF

The output of the MEF is the median value of data values inside a window

which is sliding along the input signal. If values of the input signal are fxjg

then, by using the window of size L = 2m+ 1; L � N; the output signal on

position j will be

yj = median valuefxj�m; :::; xj�1; xj ; xj+1; : : : ; xj+mg: (4:1)

Applying the MEF at the receiver in front of the decision block causes a
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change of error probability, giving

PE(m) = P�(0)

LX
k=m+1

�
L

k

�
P
k

eg
(1� Peg)

L�k

+ P�(1)

NX
k=m+1

P
1

�
(k)P 1

ei
(k)

+
1

2
P�(1)

mX
k=1

P
1

�
(k)

L� k + 1

N � k + 1

L�kX
l=m�k+1

�
L� k

l

�
P
l

eg
(1� Peg)

L�k�l
:

(4:2)

The �rst member of this equation (Pg) represents the error probability

due to the Gaussian noise when impulse noise does not occur in the symbol

interval of length T . Now, the sample, which is in the middle of the symbol

interval T , is the median value of L samples inside the window and the error

probability is signi�cantly reduced because the MEF will eliminate all the

errors on k � m samples inside the window. All possible combinations of

corrupted samples inside the window of size L, that can cause a decision

error,
�
L

k

�
of them, had to be taken into account. The second member of

(4.2) represents the error probability due to the in
uence of impulse noise

(Pi) only [4]. It is obtained from the second member of (3.7) after eliminating

all the k samples long impulses, k � m. The third member (Pgi) of (4.2)

is a reduced form of the corresponding member of (3.7) and, as the most

complex, it has to be explained more thoroughly.

The �rst sum (over k) represents all the impulses that can not cause an

error because their length, expressed in the number of samples, is k � m.

These impulses can cause an error only in combination with the Gaussian

noise. Factor 1/2 in front of the �rst sum expresses the probability that

the impulse has the opposite sign from the signal, so that it can cause an

error. The other sum (over l) is the error probability due to the Gaussian

noise when an impulse occurs in the symbol interval T , but it is not long

enough to cause a decision error by itself. (L�k+1)=(N �k+1) represents

the probability that the impulse noise, k samples long, and con�ned to the

symbol interval T , is located inside the window of size L.

5. Results

The e�ect of noise reduction by using the MEF is observed via the ratio

of probabilities given by (3.7) and (4.2), i.e.

r(m) =
PE(m)

PE
; m = 0; 1; 2; :::;

N � 1

2
: (5:1)
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It is necessary to express some of partial probability of errors, from (3.7)

and (4.2), as the function of noise and signal parameters.

Error probability P 1

ei
(k) caused by a k samples long impulse noise [4] is

P
1

ei
(k) =

1

2

kT0

T
=

k

2N
; (5:2)

and the probability that the impulse noise is k samples long is given by (2.3).

Using (2.3) and (2.4) we get

P
1

�
(k) =

�k

2n2
e
�

�k
2

4n2 : (5:3)

It is assumed that the signal in the receiver has a rectangular form, so

that the error probability is

Peg =
1

2
erfc

 r
S=N

2

!
; (5:4)

where erfc(x) is the complementary error function and S=N is the signal to

noise ratio

S=N =
Ps

�2
: (5:5)

The ratio of probabilities r(m) depends on several variables: �T , n, S=N ,

m and N . r(m) is shown in Fig.1 as the function of S=N with parameters

n 2 f1; 3; 5g and m 2 f2; 4; 5g. The total number of samples in the symbol

interval T is taken to be constant having the value N = 11. The average

number of impulses in the symbol interval has the value �T = 10�2, so that

(3.4) is satis�ed.

When the average impulse length increases, then the e�ect of noise re-

duction decreases ( r(m) increases ). This is obvious if we compare graphs

with the same window size: (1; 5), (3; 5), (5; 5) or (1; 4), (3; 4), (5; 4): This is

to be expected, and it is valid for all values of S=N ratio. Similar behavior

stands for all values of S=N ratio when the size of window L decreases and

the average impulse length is constant. This can be noticed by comparing

graphs (1; 5), (1; 4) or (3; 5), (3; 4) or (5; 5), (5; 4).

It is very interesting to see how r(m) depends on S=N ratio. If S=N ratio

is small, Gaussian noise has the major in
uence on the total error prob-

ability. That is why the use of the MEF corresponds mostly to Gaussian

noise reduction. The error probability due to Gaussian noise is signi�cantly
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Figure 1. Noise reduction factor as the function

of S/N, with parameters n and m.

reduced and the impulse noise becomes dominant for greater S=N ratio (con-

stant parts of graph of r(m) for values of S=N greater than 12dB -the error

probability and r(m) do not depend on S=N any more). Minimum values

of r(m), i.e. minimum values in Fig.1, are obtained for those values of S=N

for which in
uences of both impulse and Gaussian noise on the error prob-

ability are nearly equal. This conclusion is ilustrated in Fig. 2, where error

probability graphs are shown for the case when MEF is used on separate

impulse and Gaussian noise and on combined impulse and Gaussian noise.

It is known that the average impulse length and bandwidth are in re-

lation, n � 1=B. On the other hand, for constant sampling rate, the sig-

nalling rate is proportional to the number of samples in the symbol interval

T , �s = 1=T � 1=N . This is why the ratio n=N � �s=B represents the

measure of channel utilization. If the ratio n=N is small we deal with small

transmitting rates in comparison to the available frequency band. In that
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case, the reduction factor of impulse noise is great too, i.e. the use of the

MEF is e�cient; in Fig. 1 those are graphs (1; 5) , (1; 4). If we increase the

ratio n=N , i.e. transmitting rates, graphs (5; 5) and (5; 4), e�ciency of the

MEF is reduced.

If Gaussian and impulse noise are both present in the communication

channel, the �lter choice depends on the signal to noise ratio. In the area of

low S=N , where Gaussian noise is dominant, the use of the matched �lter is

preferred, while in the area of high S=N MEF has an advantage because it

gives lower error probability.

Figure 2. Error probability for the impulse, Gaussian and

combined impulse and Gaussian noise as the function

of S/N, with parameters n = 3 and m = 5.

6. Conclusion

The analysis done in this paper shows the great e�ect of the MEF use

in binary digital receiver to reduce both impulse and Gaussian noise. For

small digit rates and great values of S=N , the reduction of impulse noise

is signi�cant. The reduction of Gaussian noise is signi�cant in the area

of small values of S=N where the in
uence of Gaussian noise is dominant.

Depending on parameters of both noise components, it is possible to reduce

the total error probability (up to two orders of magnitude). If impulse noise
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is dominant in the channel, then it is justi�ed to use MEF. When S=N is

low, i.e. when Gaussian noise is dominant in the channel it is better to use

the matched �lter because it is optimal for this kind of noise.
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