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Abstract. This paper presents an experimental object oriented system that

provides operating system level support for distributed transactions that op-

erate on share objects. Transactions are a common construct that distributed

programming environments provide in order to maintain the consistency of dis-

tributed information in the presence of partial failure and concurrency. The goal

of constructing a transactions support in a distributed object oriented system

is to make transactions available as a fundamental programming constructs for

reliable distributed computing; on the other hand, the distributed environment

can be used to exploit the parallelism in some computation within transactions.

This paper presents the basic components of a distributed object oriented sys-

tem based on transactions processing and its implementation on a local network

of DEC Stations 3000 under OSF/1 vers 1.32 and Zenith PC under Linux 1.2.8

and on a NOVELL network under NetWare 3.11. Basic transport{level com-

munication is performed by TCP/IP, UDP/IP via an Ethernet and by IPX,

respectively.

1. Introduction

The potential bene�ts of distributed processing are now recognized. The-

refore, there is a great interest in general-purpose methodologies and tech-

niques that simplify the construction of e�cient and robust distributed ap-

plications. Now, atomic transactions are quite a familiar paradigm for

the construction of reliable distributed applications [22].

Transactions are originally developed for database management systems,

to aid in maintaining consistency constrains on stored data. Database man-

agement systems are not the only ones that must assure the consistency of
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stored data despite failures and concurrency. Argus, TABS/Camelot sup-

ports the nested transaction scheme [22]. Eden supports a variation of the

nested transaction scheme in which an action must be explicitely committed

by the user [22]. Transactions are also available in the Clouds distributed

operating system.

Although operating systems support for transactions and atomicity is be-

ginning to appear, the desirability of supporting transactions and atomicity

has not yet been generally accepted [6].

This paper describes the design and implementation of a distributed ob-

ject oriented system, called DOSTP, based on transactions processing, de-

veloped at the University of Craiova, Department of Computers, on a UNIX

local area network and on a NOVELL NetWare 3.11 network.

2. Objects and Transactions in DOSTP System

In DOSTP system major components are: the objects, the transactions

and the application processes. The application processes invoke operations

on objects by using atomic transactions. In an atomic transaction may

appear any number of objects located locally or remotely.

An atomic transaction begins with a BeginTransaction function which

is used by the DOSTP system to allocate necessary resources to transac-

tion. Any operation of an object may be executed in either synchronous or

asynchronous mode. If an operation returns an error code, the application

process must request that the atomic transaction be aborted.

A transaction can be committed only if all operations involved in that

transaction complete successfully. Prior to transaction commit, the applica-

tion process may request to wait until all the asynchronous initiated opera-

tions are (successfully or unsuccessfully) completed.

In DOSTP, an object (persistent object) is a container for data; each

object has a type that de�nes a set of primitive operations. An Object

Manager encapsulates its data objects and the operations that manipulate

it. The operations on objects are performed only by the Object Managers

that are encapsulated in processes. Object Managers receive method invo-

cations via a request message.

Objects are active entities, doing work only when their methods are in-

voked. Object Managers are called in these case server processes. An

application process may begin many asynchronous operations on objects;

these operations are performed in parallel by the Object Managers.

The Object Managers encapsulate the state of objects as well as their

behavior that collectively describes the notion of active objects. The state

contains the data structures of the objects involved in the requests and the
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synchronization requirements necessary to ensure that the activities of mul-

tiple operations that invoke the same object do not conict or interfere with

one another. Object Managers provide the means to maintain the consis-

tency of objects. We developed for DOSTP two mechanisms for synchroniza-

tion: one uses a pessimistic synchronization scheme and the other uses an

optimistic synchronization scheme. The pessimistic scheme uses Read/Write

locks. However, Object Managers can increase concurrency by exploiting the

semantics of operations. Object Managers may use type-speci�c locking, a

mechanism which employs type-speci�c properties of objects to recognize

when certain operations such as concurrent write operations are not con-

ictual. In the pessimistic scheme (to synchronize access to the objects) an

operation that invokes an object is temporary suspended if it will interfere

with other operation that is currently being serviced by the Object Man-

ager. The suspended operation will be resumed only when all transactions

containing the conicting operations commit.

When an Object Manager performs an operation, it then sends a response

message containing the result. From the point of view of an Object Manager

there may be many uncommitted transactions active at any given time.

In order to provide failure atomicity and persistent objects, Object Man-

agers have also other responsibilities in committing and aborting transac-

tions and also in recoveries of transactions.

DOSTP system uses a log-based recovery algorithm. In a log-scheme,

whenever a persistent object is modi�ed, information about changes are

recorded in secondary storage. The information recorded in a log �le serve

two purposes: to undo the updates of transactions that abort and to redo

the transactions that commit prior to a crash but whose updates were lost

or destroyed by the crash. DOSTP uses a write-ahead logging algorithm.

In order to ensure the atomicity of transactions, these algorithms require

that undo information must be forced on log before the object modi�ed by

the current update operation is overwritten on persistent storage and redo

information must be forced before a transaction can commit[6].

The write-ahead log algorithm implemented in DOSTP is based on value

logging. The Object Managers log the old and new value of updated ob-

jects whenever they update a persistent object. The advantages of a write

ahead logging are recognized in many paper [6][7]: reduce I/O activity both

at transaction commit time and during recovery, when the log is typically

scanned sequentially, the potential for higher concurrency, the potential for

an easier management of the objects.

Distribution in DOSTP is largely transparent: a programmer must never

know where an Object Manager resides. In fact, invoking an operation on an

object residing on a remote node has exactly the same e�ect as if it performed
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locally, except of course for a poor performance. Therefore, applications can

be developed and debugging in a single node environment and then moved

to the network.

In DOSTP system, Object Managers can execute in parallel multiple

transactions.

3. The basic elements of DOSTP

DOSTP system is based on seven types of processes located on the top

of a multitasking kernel. One type of these processes is user-programmable.

This is the Object Manager briey presented previously. The components

of DOSTP are shown in �gure 1 and are briey described below:

Figure 1. Two nodes of DOSTP system.

1. The Communication Server is a single process in each node of

DOSTP system. Its purpose is to handle communications between dif-
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ferent nodes. An application process operates like in a local process en-

vironment. Therefore, communication between DOSTP nodes involves

inter-node messages and inter-process communication. The Communica-

tion Server provides node to node message forwarding. The communica-

tion between a pair of processes located on di�erent nodes is achieved by

interposing two Communication Servers (one in each node) between the

sender process and the receiver process.

2. TheName Service is a single process in each node of DOSTP system.

Its purpose is to �lter the objects: local or remote.

Because of a high degree of location transparency is supported, the Name

Service will have to maintain data structures of its own. The users need not

to know where objects are stored. The user merely names the object (identify

its type and its name) and the Name Service �nds the correspondent Object

Manager.

3. The Transaction Server is a single process in each node of DOSTP

system. The Transaction Server receives and treats all the requests of Be-

ginTransaction, EndTransaction and AbortTransaction on behalf of local

or remote transaction. The Transaction Server also records information

about the nodes involved in a distributed transaction.

4. The Central Server is a single process in the system; its role is to

assign identi�ers and priorities to transactions.

5. TheObject Manager is the process that coordinates and stores many

objects of the same type. These are persistent objects stored in one or

more corresponding �les. The Object Manager synchronizes the accesses

to the same object using type-speci�c locking scheme.

6. The Recovery Server is a single process for each Object Manager.

The Recovery Server coordinates the process of recovery after a trans-

action aborts. The Recovery Server has also functions during normal

execution of a transaction. The Recovery Server receives the records to

be written in the log �le from its correspondent Object Manager and from

Transaction Manager and writes these records in the log �le.

7. The Application processes are written by the users and invoke

transactions and operations on objects. In each DOSTP node there may

be many Application processes.

4. UNIX Implementation

At the time of this writing, the DOSTP system was implemented on a

local network of DEC Stations 3000 under OSF/1 vers 1.32 and Zenith PC

under Linux 1.2.8. Basic transport{level communication is performed by

TCP/IP via an Ethernet.
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In order to connect application processes, DOSTP (the Transaction

Server) has in each node a FIFO queue whose name is public. Any ap-

plication process that wants to be connected to DOSTP, must at �rst put

a connect request message in this queue (a BeginTransaction message).

Prior to transaction begin, each application process must create a FIFO

queue in which DOSTP will send the reply messages. DOSTP knows that

the name of this FIFO queue is the name of the Application process (written

in the BeginTransaction message) followed by the su�x .FIFO. DOSTP an-

swers to a BeginTransaction message with a reply message whose structure

is shown below:

typdef structf
int type;

int ErrorCode;

int Shmid,Semid;

g BEGIN TRANSACTION ACKNOWLEDGE;

In a BeginTransaction acknowledge message, the shmid �eld contains the

identi�er of a shared memory segment. DOSTP (the Transaction Server)

creates this shared memory segment in order to receive and transmit all the

messages from/to application process. In order to ensure the synchronization

of all processes that will have access to the shared memory segment, DOSTP

creates and initializes a set of semaphores and returns its identi�er, (in semid

�eld) to the Application process.

Application processes are programmed with the aid of some library func-

tions that contains the code for doing the connection to DOSTP system, for

beginning, committing and aborting a transaction, for invoking operations

on objects, for waiting the termination of an asynchronous operation, and

so forth.

In order to connect it itself to DOSTP system, an Application process

must execute the Init(ApplicationName) and BeginTransaction() fu-

nctions.

It is the Transaction Server's responsibility to receive and treat the con-

nection requests (the BeginTransaction messages); it then replies with an

BeginTransactionAck message placed in the Application process' FIFO

queue. The Transaction Server is a daemon process which creates a child

process (fork, exec) for each BeginTransaction message received and returns

then an identi�er for that transaction. It is newly created process' responsi-

bility (called Local Transaction Server), to coordinate the transaction.

The Local Transaction Server executes at the initiation of a transaction

a sequence of operations briey described below:
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void Init (char *QueueName)

f

... /* connect the handlers for SIG CHLD, SIG ALRM */

... /* connection to the application queue */

... /* creates the shared memory segment */

... /* it tries to attach to the shared memory segment */

... /* creates the set of semaphores */

... /* request to the parent process (Transaction Server) to reserve an iden-

ti�er for transaction */

... /* build the reply message */

... /* sends the reply message to the application */

g

After a transaction begins, the Application process invokes an operation

on an object via a request message placed in the shared memory segment

and receives the expected response messages in the shared memory segment

too. In fact, many messages between DOSTP processes are placed in the

shared memory segment. The "producer process" will insert the message in

the shared memory segment informing the "consumer process" by executing

an UP operation on a semaphore. The "consumer process", blocked at this

semaphore, will receive this message in its own queue, placed in the shared

memory segment.

The operation requests from Application processes to Object Managers

are delivered to the Transaction Server (in fact, Local Transaction Server).

After some routine processing, these requests are forwarded to Communi-

cation Server. The Communication Server, using Name Service, knows the

location of the objects in the network. If the object is local, and the re-

quest is the �rst request for that object, the Communication Server sends a

message to the Object Manager in order to obtain a connection. The Ob-

ject Manager creates a child process that tries to attach itself to the shared

memory segment. From this moment, the child process accepts messages re-

questing what operations be performed and returns results and error codes

in reply messages placed directly in shared memory segment.

When the Object Manager resides on a node di�erent from that of the

Application process, the requests to the Object Manager are forwarded by

the Communication Server at each node.

The Transaction Server from the Application process' node

records when a new node joins the transaction (in that case, the transaction

has spread to another node).

From the point of view of the Object Manager, there is only one way

to receive the requests and sends the results: by using a shared memory

segment (even if the Application process resides on a node di�erent from

that of the Object Manager).
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The structure of a shared memory segment is shown below:

typedef struct

f
PACKET SlotTable[MAX SLOT];/* packets* /

int FreeList[MAX SLOT];/* free slot list */

int IndexFreeList;/* index in the free slot list */

int AppQueue[MAX SLOT];/* message queue for an application process */

int IndexAppQueue;/* index in an application process queue */

int TransServerQueue[MAX SLOT];/* message queue for Transaction Ser-

ver */

int IndexTransServerQueue;/* index in Transaction Server queue */

int CommServerQueue[MAX SLOT];/* message queue for Communication

Manager */

int IndexCommServerQueue;/* index in Communication Manager queue */

int ObjectManagerQueue[MAX OBJ][MAX SLOT]; /* arrays of queues for

Object Managers */

int IndexObjectManagerQueue[MAX OBJ];/* arrays of indexes in the queu-

es for Object Managers */

gSHM;

The SlotTable collect all the messages, called packets, between the Appli-

cation process and the DOSTP modules. The structure of a packet is shown

below:

typedef struct

f
int type;/* packey type */

int ErrorCode;/* error code */

int TransIdenti�er;/* transaction identi�er */

int ObjectIdenti�er;/* object identi�er */

long SeqNumber;/* the packet's number in this transaction */

int AppSlot;/* used by the Application */

long AppSlotUsage;/* used by the Application */

int InternId;/* used by the Transaction Server */

char ObjectName[OBJECT NAME SIZE];/* the name of the object */

REQUEST text;/* the request or result message */

g PACKET;

The positions of the packets in the SlotTable are pointed by arrays of in-

dexes: AppQueues [MAX SLOT], TransServerQueue [MAX SLOT], Comm-

ServerQueue [MAX SLOT], ObjectManagerQueue [MAX OBJ]

[MAX SLOT]. The entire shared memory segment is protected by a sema-

phore, the S SHM semaphore. Messages may be sent and received from

the shared memory segment using semaphores for synchronization. These

semaphores are allocated either statically at the beginning of the transaction,

or dynamically during the access to objects.
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The Object Managers return the results and the exceptions to Application

processes via shared memory segment. If the Object Manager resides on a

node di�erent from that of the application process, the results are forwarded

by the Communication Server.

Every Object Manager must be recorded in DOSTP system. At the con-

nection time, an Object Manager must be registered by the DOSTP system.

Therefore, every new Object Manager begins its execution by sending an

authentication message to the local Communication Server. The Communi-

cation Server sends a message to the Central Server, who is responsible to

forward this message to every Name Service. After sending an authentica-

tion request, the Object Manager will receive a reply message in its FIFO

queue.

The connection of an Object Manager to the DOSTP system is ready

when the Object Manager receives the reply message to its authentication

request.

After connection, the Object Manager can receive request messages; the

�rst message may be only of the BEGIN TRANSACTION OBJECT type.

This type of message stores the identi�er of the shared memory segment,

the number of the semaphore allocated for the synchronization in the ac-

cess to the shared memory segment, the identi�er of the queue reserved for

the Object Manager in the shared memory segment and the name of the

Application process.

The structure of a BEGIN TRANSACTION OBJECT message received

by an Object Manager is shown below:

typedef struct

f
int type;

int ErrorCode;

int shmid; /* shared memory identi�er */

int semid; /* semaphore identi�er */

int SemNumber;

int QueueNumber;

char AppName;

gBEGIN TRANSACTION OBJECT;

The ObjectManager creates a child process for every new transaction.

Because the Object Managers are user programmable modules, there is a

set of available library functions for connection to the DOSTP system, for

receiving and sending messages.

In order to be connected to the DOSTP system, Object Managers must

call the Init function; the code of an Object Manager is briey described

below:
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int Input(arguments ...)

f

n=read(fdPipe, &packet, sizeof(packet);

if (!authentication)

if (packet.type == AUTHENTICATION)

if (packet.ErrorCode == MY OK) authentication = 1;

else f

.../* the connection of the Object Manager to DOSTP system failed */

g

else f

.../* a packet was received before the connection to DOSTP system */

.../* ignore this packet */

g

else f

switch(packet.type)f

case BEGIN TRANSACTION:

TransNumber++;

.../* creates a child process who will coordinate this transaction */

break;

case ACCEPTED TRANSACTION:

.../* the child process accepts the transaction */

.../* it succeeded to attache itself to the shared memory segment */

.../* the transaction is inserted in a list of transactions */

break;

case NOT ACCEPTED TRANSACTION:

.../*the child process failed to connect itself to the shared memory segment

*/

break;

case END TRANSACTION:

.../* transaction ended successfully */

.../* deletes the transaction from the list of transactions */

break;

case ABORT TRANSACTION:

.../* transaction failed */

.../* deletes the transaction from the list of transactions */

break;

...

default:

.../* unknown packet type */

break;

g

/* end switch */

g

g

The child process created by the Object Manager will receive the BEGIN-

TRANSACTION OBJECT packet whose �elds identify the shared memory

segment and will try to attach itself to this shared memory segment. If the
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child process succeeds, it then will inform its parent that the transaction is

accepted; otherwise the parent receives the message NOT ACCEPTED TR-

ANSACTION. The child process can now receive packets from the applica-

tion process in the shared memory segment. Therefore, it blocks itself until

it receives a packet. The child process executes the main loop shown below:

void ChildProcess(void)f
.../*initialize*/

while (JobToDo) f
WaitForMessage (&packet);

TreatMessage (&packet);

g
... /* dettach from the allocated resources */

g

When the Application process sends the EndTransaction message to the

Transaction Server (in fact, to the Local Transaction Server) informing that

the transaction wants to commit, the commit processing may begin. The

two{phase commit protocol is coordinated by the Local Transaction Server.

The Local Transaction Server knows if remote sites are involved; it obtains

from a local list the names of the child nodes and sends the PrepareTo-

Commit message to all the Object Managers. An Object Manager (in fact,

its child process who executes this transaction) treats a PrepareToCommit

message with the code briey described below:

void PrepareToCommit (PACKET* pPacket)

f
... /* check the request message */

... /* suspend receiving any new operation requests for that transaction */

... /* wait until all operations for that transaction are �nished */

... /* for optimistic version only: check if the modi�cations can be written

*/

... /* send back a PrepareToCommitAck message */

g

When the Local Transaction Server, who is the coordinator of the trans-

action is informed that all remote nodes have prepared, it knows that now

it can commit the transaction.

The Object Manager treats a Commit Transaction and an Abort Trans-

action message with the code briey described below:

void CommitTransaction (PACKET *pPacket)

f
... /* check the syntax of the request message */

... /* for optimistic version only: install the modi�cations */
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... /* sends a CommitTransaction record to the Recovery server */

... /* drops the locks that were holding on behalf of this transaction */

... /* sends back a CommittAck message */

g

void AbortTransaction(PACKET *pPacket)

f
.../* check the syntax of the request message */

.../* sends an Abort message to the Recovery Server */

/* then, the Recovery Server logs an Abort record in the log �le */

.../*for pessimistic version only:

sends a RollBack message to the Recovery Server in order to undo the changes

that this transaction has made

:loop: the Recovery Server �nds the most recent modi�ed record of the abort-

ing transaction; this record is sent to the Object Manager who undo this op-

eration. The Recovery Server repeats this process for each of the aborting

transaction's modi�ed record. When the roll back process is �nished, the

Recovery Server sends a FinishedRollBack message */

... /* drops the locks that were holding on behalf of this transaction */

... /* inform the parent process that the transaction aborted */

g

The library functions available to an Application process are briey de-

scribed below:

int Init(char *AppName);/* connection to DOSTP system */

int End(void);/* �nish connection to DOSTP */

int BeginTransaction(void);/* the Application process begins a transaction

and request a shared memory segment for communication */

int EndTransaction(int);/* a succesfully ended transaction */

int AbortTransaction(int);/* an unsuccessfully ended transaction */

int AsyncRequest(char *ObjectManagerName, void *request, void *answer,

int *pErrorCode, int *ResponseTime) /* an asynchronous request to the Ob-

ject Manager */

int Synchronize(void);/* wait for the results of previous asynchronous re-

quests */

The Application process is not forced to wait for the completion of an op-

eration; in this case, the Application process must use asynchronous requests

and may initiate many concurrent operation.

5. NOVELL Implementation

In a Novell NetWare 3.11 Operating System, we developed a multitasking

kernel in each node. The structure of a task is the following:
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class Task

f
protected:

char Name[8];//the name of the task

char *stack;//pointer to the stack

struct TCB *taskTCB;//pointer to a TCB structure

public:

Task(char*, WIN*, unsigned=1024);//constructor

Task();
~Task();

virtual void farTaskMain()=0;

void EndTask();

struct TCB *getTCB()freturn taskTCB;g
char *Read(CHANNEL*);

void Write(CHANNEL*,char*);

g;

The kernel allocates for every task a Task Control Block and a stack. A

Task Control Block has the following structure:

struct TCB

f
Task *t;

unsigned r ss; // registers

unsigned r sp;

unsigned r bp;

State TaskState; // task state

ulong ticks;

WIN window;

task window information

g;

The communication between tasks is performed using a channel object;

its de�nition is described below:

class CHANNEL

f
protected:

SEMAPHORE s; // local semaphore for mutual exclusion

public:

CHANNEL:(unsigned char =256);//constructor
~CHANNEL();

int write(const char* ...);

int read(const char* ...);

char *bu�er;

g;

The structure of a local semaphore is presented bellow:
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class SEMAPHORE

f
private:

int value;

protected:

TCB *BlockedTasks[MAX TASKS]; //list of blocked tasks

public:

SEMAPHORE():value(1)fg;
SEMAPHORE(int val):value(val)fg;
~SEMAPHORE();

void P(TCB *);

void V(void);

g;

The task hierarchy in DOSTP is described in �gure 2.

Figure 2. The task ierarchy in DOSTP.

At the time of this writing we have developed many Object Managers and

executed some simple transactions. The most important Object Manager

that we developed is a File Manager.

The structure of a Virtual Object Manager is shown below:
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class VirtualObjectManager: public Task

f
public:

VirtualObjectManager (char*,WIN*, unsigned,CHANNEL*,CHANNEL*,

CHANNEL*, CHANNEL*, CHANNEL*, CHANNEL*, CHANNEL*); //

constructor; �rst, it calls Task class constructor and then iniatilizes seven

channels for communication with other DOSTP tasks
~VirtualObjectManager;//class destructor

virtual void TaskMain() fg;//task main function

virtual int Read(char, char*);//virtual functions can be overriden in a class

and thus adapted to �t new situations

virtual int Write(char,char*);

virtual int Delete(char,char*);

virtual int Modify(char,char*);

virtual int IsConict(char, char, char*, int, char, char, char*, int)=0; //ver-

ify the concurrence

virtual int Switch(char, char, char)=0;// select the operation

virtual void MsgToNameService()=0;// send initial information to the Na-

me Service

request *req;

char message[MES LENGTH];

CHANNEL *channel om cs, *channel cs om;

CHANNEL *channel om ts, *channel ts om;

CHANNEL *channel om nm;

CHANNEL *channel om rs, *channel rs om;

protected:

int exRqNmb, TrNmb;// number of un�nished requests and number of

transactions

executed execReq[MAXREQ*NRIDTR];//array of �nished requests

status BlkReqQs[NRIDTR];//array of waiting requests

void IdTransSearch(int);//search in BlkReqQs

void WaitingQueueInsert(char,int);//insert a request in the waiting queue

void WaitingQueueDelete(int);// delete all the waiting requests of a trans-

action

void ExecuteRequest(int);//execute or enqueue the request

void ExecuteQueue(int);//execute all the requests from a transaction queue

g;

The derivation of VirtualObjectManager from the Task class allows Vir-

tualObjectManager to inherit the Task class members.

Each Object Manager has allocated seven channels for communication

with other modules of DOSTP. These channels are reserved for the following

communications: Object Manager to/from Communication Server (om cs,

cs om) , Object Manager to/from Transaction Server (om ts, ts om), Object

Manager to/from Recovery Server (om rs, rs om), Object Manager to Name

Service (om nm).

An Object Manager receives two types of operation requests: synchronous

and asynchronous. When an application calls a synchronous operation, it
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then blocks itself until the Object Manager performs the operation. DOSTP

system provides also asynchronous operations and uses a function called

Synchronize(), to notify that the operation was performed. The Object

Manager keeps the data structures necessary to execute these two types of

operations.

Execute Request function is called for each operation request, either lo-

cally or remotely. ExecuteRequest function is called also by the Execute-

Queue function in order to initiate the execution of the next blocked oper-

ation. ExecuteQueue function is called whenever a transaction commits or

aborts. During normal execution of an operation on behalf of a transaction,

the Object Manager can block another operation on the same object on

behalf on other transaction; when the �rst transaction commits or aborts,

Object Manager must unblock the second transaction. This process is per-

formed using the following functions: IsConict function, in order to detect a

conict between operations from di�erent transactions, ExecuteQueue func-

tion, in order to unblock operation requests and WaitingQueueInsert, in

order to insert an operation request in the array of blocked requests. Wait-

ingQueueDelete function is called whenever a transaction aborts in order to

delete any blocked operation on behalf of that transaction. The reason for

this is the following: if two applications use the same object in simultaneous

transactions, the �rst one to �nish wins and makes all its changes and the

second, after a time out, is aborted and all its blocked operations must be

deleted. If a timer goes o� before the reply comes back for an operation

(this is the case of a deadlock) then the Communication Server sends an

Abort Transaction message to the Transaction Server to abort the transac-

tion. Then the second is aborted. The second application is e�ectively rolled

back by the Recovery Server to the start of its transaction, so no damage

has been done to any of its objects. In order to know what operation must

be unblocked when a transaction aborts, the Object Manager keeps an array

or records, BlkReqQs[NRIDTR]. An element of this array has the structure

shown below:

struct status

f

int InUse;//used or unused entry

int TransId;//transaction identi�er

char TransState;//the state of that transaction

wqueue *qHead;//begining of the blocked operations queue for that trans-

action

g;

For every un�nished transaction, the Object Manager keeps a queue of

blocked operation requests. If that transaction is aborted (time{out or soft-
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ware abort), the Object Manager tries to execute these waiting operation

requests. Each queue element has the following structure:

struct wqueue

f

request *Req;// pointer to a local request

char Request[MAX REQ]; // a remote request

struct wqueue *back;

struct wqueue *next;

g;

Classical transactions are serialized by analysis of Read/Write and

Write/Write conicts between concurrency transactions. Techniques which

allow more concurrency through additional interleaving than are permit-

ted using these conicts have been proposed [2] which employ type-speci�c

properties of objects to recognize when certain operations such as concurrent

write operations need not conict.

The most important Object Manager that we developed, the File Manager

uses a B++ tree-like structure to support indexed sequential access. The

structure of the File Manager is shown below:

class FileManager: public VirtualDataServer, IndexedB

f

public:

FileManager(char*, WIN*, unsigned, CHANNEL*, CHANNEL*, CHAN-

NEL*, CHANNEL*, CHANNEL*, CHANNEL*, CHANNEL*); //construc-

tor

int Read(char,char*);

int Write(char,char*);

int Delete(char,char*);

int Modify(char,char*);

void Recovery(char*);

private:

char Name[MAXNAME];

int IsConict(char, char, char*,int, char, char, char*, int); // verify the

concurrency

int Switch(char,char,char);

void MsgToNameSrv(void);//send initial information

void �le open(char*);

void �le close();

g;

For this type of objects we de�ned four types of operations: Read, Write,

Delete and Modify. We used for concurrency control a pessimistic scheme.

Conicts between concurrent transactions are identi�ed during transactions'

execution and resolved by imposing a delay (time{out) on operations until

the transaction is aborted. Conict-based concurrency control is based on
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prede�ned conicts between pairs of operations. The purpose of the IsCon-

ict function is to detect conicts between the operation whose execution

is requested and other operations already executed. Therefore, IsConict

function receives two pairs of arguments, one for the requested operation

and the other for an operation already executed. Each pair of arguments

contents: the type of the operation, the object identi�er, pointer to the key

of that record, and the transaction identi�er.

Identi�cation of the conict types between the operations of concurrently

active transactions is accomplished by a set of dependencies. These depen-

dencies can be obtained directly from the abstract data type's speci�ca-

tions. In File Manager, the transactions are serialized by analysis of the

Read/Write and Write/Write conicts between concurrent transactions.

The transaction Server coordinates the initiation and termination of tran-

sactions. Therefore, Transaction Server must know always the state of every

transaction active at his node. The Transaction Server structure is shown

below:

class TransactionServer: public Task

f

public:

TransactionServer(char*,WIN*,unsigned, CHANNEL*,CHANNEL*,

CHANNEL*, CHANNEL*, CHANNEL*, CHANNEL*, CHANNEL*); //

constructor

virtual void TaskMain();

protected:

CHANNEL *channel a ts, *channel ts a;

CHANNEL *channel ts rs, *channel rs ts;

CHANNEL *channel ts cs,*channel cs ts;

CHANNEL *channel ts om, *channel om ts;

private:

ID tab IdTab[NRIDTR];// array of transaction identi�ers

ID S tab IdSTab[NRIDTR*NRSRV];//node's children; if the transaction

was initiated in many nodes these are necessary in two phase commit protocol

char mesTran[CHANN];//messges received

int i IdTab, i IdSTab;//number of transactions, number of node's children

int trIdLimit;// the limit of the transaction identi�ers allocated for this

node

int SearchId(int);//search an identi�er in IdTab

void DeleteId(int) ;//delete an identi�er in IdSTab

void InsertIdS(char*);//insert an element in IdStab;

long tran;//global semaphores for mutual exclusion

WORD nr;// active workstation number in DOSTP

g;

For every active transaction, the Transaction Server reserves an identi�er.

This identi�er is used in DOSTP system by all the following requests from
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that transaction. To commit or abort a transaction the Transaction Server

uses a variant of tree-structured two phase commit protocol; each node is

the coordinator for the nodes that are its children. The Transaction Server

keeps the information about a node's relation below in the tree in the IdSTab

array. Each element of this array has the structure shown below:

struct ID S tab

f

int id;// transaction identi�er// char ObjectType;//object type;identi�es

the Object Manager's name

int ObjectManagerConnection;// the connection number of the node in wich

ObjectManager resides

g;

The Communication Server is the process that provides location transpar-

ent communication between applications and Object Managers; its structure

is shown below:

class CommunicationServer: public Task

f

friend void far loadds RecESR();

public:

CommuniacationServer(char*,WIN*,unsigned, CHANNEL*,

CHANNEL*, CHANNEL*, CHANNEL*, CHANNEL*, CHANNEL*,

CHANNEL*); // constructor

~CommunicationServer();//destructor

request *req[MAXREQ]; //array of local requests' addresses

int Find(char, char);//�nd an Object Manager

virtual void TaskMain();

protected:

CHANNEL *channel cs ts, *channel ts cs;

CHANNEL *channel cs a, *channel a cs;

CHANNEL *channel cs om, *channel om cs;

CHANNEL *channel ts om, *channel om ts;

private:

struct com S;//IPX connection's information;

int TransId[NRIDTR];//number of transactions;

cgar *MessageQueue[MAXREQ];//array of messages received by IPX;

long semE;//NetWare semaphore for mutual exclusion in emision;

WORD nrpE; number of DOSTP nodes

SourceAddress TabSourceAddress[MAXREQ];keeps the parent node's ad-

dress

int indTransId, indQueue, reqId, errTimeOut, errPreTimeOut; // indexes

void Init(); //IPX initialization;

int SearchId(int);// �nd a transaction identi�er in the TransId table

void InsertId(int);//insert a transaction identi�er in the TransId table

void GetMessQueue(char *);//get a waiting message
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void PutReqTimeOut(struct request*); //put a request in the time out

table;

void GetReqTimeOut(int,char*);//get a request from the time out table;

void PutPrepareTimeOut(char*);//put a PrepareToCommit

message in the time out table

void GetPrepareTimeOut(char*);// get a PrepareToCommit

message in the time out table

void TimeOutCheck();//test time out;

void SourceAddr(int, int, char*); //record the parent node's address

int Receive();//initiate a IPX reception

void Send();//initiate a IPX emision

void BuildPacket(request*);//build a packet

void RecProcessing(char*);//analyse a remote packet

void EmiProcessing(char*);//prepare a remote packet

g;

The mechanism within the Communication Server supports the IPX pro-

tocol. The IPX protocol is a datagram delivery service. Every event, such

as receiving or transmitting a packet is controlled by a structure known as

an Event Control Block.

The Communication Server's Task Main function performs the following

actions:

1. At the beginning of its execution, it initializes the communication

channels (open the sockets, initializes the Event Control Blocks) and calls

the Receive function in order to activate an asynchronous reception of

a message. Whenever the Communication Server receives a packet from

another node, the RecESR function is called. This function is declared as

an Event Service Routine (ESR). ESR's are called by IPX with interrupts

disabled. Upon completion of the ESR, IPX re{enables interrupts and

returns control to the process interrupted by the event. Meanwhile, IPX

listens for and attempts to receive a packet. The RecESR function places

the incoming message in the MessageQueue.

2.The main loop of Task Main consists of receiving and sending messages.

The Communication Server may receive messages from the application

(in channel a sc), Object Manager (in channel om sc) and Transaction

Server (in channel ts sc) and may send messages to Object Manager (in

channel sc om) and Transaction Server (channel sc st). After initializa-

tion, the Task Main tries to �nd a remote message in MessageQueue; if

the MessageQueue is not empty, then the �rst message is read and dis-

carded; if the message type is valid, then the RecProcessing is called with

this message as argument.

The Communication Server is designed to maintain an acceptable level of

reliability in the transfer of information. Periodically, in order to check if,
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after sending a request a time out error occurs until the response is received,

the Communication Server calls the TimeOutCheck function.

The Communication Server may receive and send remotely the following

message types: R-operation request received from a remote application and

forwarded by the Communication Servers, P-Prepared to commit message

received from the Transaction Server, C-Commit message received from the

Transaction Server, A-answer message sent to a remote application and for-

warded by the Communication Servers, K-PrepareToCommitAck message,

sent to the Transaction Server, the coordinator of the transaction.

The Communication Server may send locally the following message types:

1{con�rmation request message sent to Transaction Server in order to

con�rm that a transaction identi�er exists, 2{join message sent to a Trans-

action Server in order to record the new child node involved in transaction,

3,4,5{PrepareToCommit, Commit, Abort messages sent to the Local Object

Manager and 6{PrepareToCommitAck message sent to Transaction Server,

the transaction coordinator node. The Communication Server may receive

locally the following message types: 1{request message received from an ap-

plication, 2{transaction identi�er's con�rmation message, received from the

Transaction Server, 3,4,5{PrepareToCommit, Commit, Abort messages re-

ceived from Transaction Server, the coordinator of the transaction, in order

to be sent remotely and 6{PrepareToCommitAck message.

The Communication Server uses a naming service (The Name Service)

that provide permanent names for objects and Objects Managers. The struc-

ture of a Name Service is shown below:

class Name Service: public Task

f
public:

Name Service (char*, WIN*, unsigned, CHANNEL*, CHANNEL*, CHAN-

NEL*, CHANNEL*, CHANNEL*,

CHANNEL*, CHANNEL*);
~Name Service();

virtual void Task Main();

protected:

CHANNEL *channel om ns, *channel cs ns, *channel ns cs;

private:

struct infObjectM[MAXOBJ];// information about Object Managers

long semE, semR, semER;// global semaphores

Get Address(void);

void Init(void);//IPX initiation

void Reception(void);// initiate an IPX reception

void Emision(void);// initiate an IPX emision

void Send(void);//broadcast information about the new serve

void Receive(void);//records a new server

g;
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An application task has the folowing structure:

class Application: public Task

f

public:

Application (char*, WIN*, unsigned, CHANNEL*, CHANNEL*, CHAN-

NEL*, CHANNEL*, CHANNEL*, CHANNEL*, CHANNEL*);

~Application();

virtual void TaskMain();

protected:

CHANNEL *channel a sc, *channel sc a;

CHANNEL *channel a ts;

request *Req[MAXREQ];//array of pointers to requests

int indReq, nrReq;//index of the �rst free slot in the request table, number

of requests

int BeginTransaction();

int EndTransaction(int);

void AbortTransaction(int);

int Synchronize;

int BuildRequest(int, char*, char*);

void SendRequest();//send the request

void MsgDispatch();

g;

6. Conclusions

The present paper describes the design and implementation of a dis-

tributed object{oriented system based on transaction processing, called

DOSTP system. The implementation was done on a local network of DEC

Stations 3000 under OSF/1 vers 1.32 and Zenith PC under Linux 1.2.8 and

on a NOVELL network under NetWare 3.11. Basic transport-level commu-

nication is performed by TCP/IP, UDP/IP via an Ethernet and by IPX,

respectively.

The major feature of this approach is the location independent object

invocation; this is very useful for applications development. A programmer

must never know where an Object Manager resides. Applications can be

developed and debugging in a single node and then moved to the network.

DOSTP system provides a collection of functions integrated with a mech-

anism for handling concurrency and recovery.

We intend to implement the same basic components in a heterogeneous

network based on UNIX and Windows NT operating system.

A conclusion from this work is that object-oriented design and transac-

tion{based programming techniques can provide signi�cant bene�ts in dis-

tributed systems.
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