
FACTA UNIVERSITATIS (NI�S)

Series: Electronics and Energetics vol. 9, No.1 (1996), 1{12
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Abstract. The FEM exhibits a slow rate of convergence when it is used

for analysis of waveguides containing sharp edges where electromagnetic �eld

is singular. The convergence of the method can be improved by introduc-

ing singular elements that model analytically predicted singular behavior. A

number of authors have developed singular elements that are compatible with

either scalar or standard vector FEM. In this paper we propose a new singular

element that is compatible with the edge-based �nite elements of arbitrary

order and can cope with any order of singularity while preserving the sparsity

of the FEM equations. All necessary integrations are performed in closed

form. Edge-based singular elements not only more correctly model singular

behavior of the �eld and thus require smaller FEM mesh, but they also do not

introduce any spurious modes in the numerical solution. Numerical results

presented in this paper verify that the convergence of the FEM is signi�cantly

improved.

1. Introduction

The �nite element method (FEM) based on edge elements is a powerful

numerical technique for solving a variety of waveguide problems. It is not

only capable of handling waveguides of complicated cross-sections and with

arbitrary �llings of inhomogeneous media, be they isotropic or anisotropic,

but it also eliminates nonphysical, spurious modes from the numerical solu-

tion. However, many waveguiding structures contain conducting or dielectric

edges embedded in an inhomogeneous isotropic or anisotropic medium, and
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the �eld behavior can be singular in the vicinity of these edges [1], [2]. If

polynomial edge-elements are used to model these rapidly varying �elds, it

becomes necessary to use a �ne mesh in the vicinity of the edge [3], [4]. The

increase in the number of unknowns in the mesh has the e�ect of increas-

ing the computational time as well as memory requirements [5]. One way

of coping with the singular �eld behavior is to use covariant-projection ele-

ments [6] or edge-based elements [7] that allow the normal component of the

�eld to be discontinuous at a sharp edge. Another way is to augment the

trial functions with appropriate singular functions associated with a noodles

(unknown) variable [8], [9] which leads to the increase of the bandwidth of

the global FEM matrix. The most e�cient approach is the use of singular

elements. In this case the ordinary elements touching the edge are replaced

by singular elements with trial functions that properly model singular �eld

behavior. Singular elements have been used both in scalar [10], [11] and

vector [11], [12] FEM formulation.

In this paper a new edge-based element similar to [13] is proposed.

This singular element is used in the H-�led FEM formulation [14] and it

is compatible with edge elements (speci�cally the quadratic-normal/liner-

tangential edge element). Trial functions are expressed in a triangular polar

coordinate system [15] and all the necessary integrations are performed in

closed form while the sparsity of the FEM equations is preserved. The

number of unknown parameters needed to model the �elds is signi�cantly

reduced by employing singular elements, as the presented numerical data

show, and at the same time the non-spurious modes are eliminated.

2. Finite element formulation

Consider a waveguiding structure uniform along the z-axis of an (x; y; z)-
coordinate system. The cross section of the structure (in the xOy plane)

is arbitrarily shaped and the material in it is inhomogeneous with " =

er(x; y)"0 and � = �r(x; y)�0 being permittivity and permeability of the

material, respectively; "0 and �0 are the free space parameters. For a time

harmonic excitation of angular frequency ! and the lossless material, the

electric, E, and magnetic, H, �elds propagating along the z-axis, can be

expressed in the following form

~E = E(x; y)ej!te�j�z ;

~H = H(x; y)ej!te�j�z
(1)

where ~E; ~H , are the values of the �elds in the cross section z = 0 and 
 = j�
is the propagation constant.
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In this paper a �nite element formulation based on the vector Helmholtz

equation for magnetic �eld ~H [16] is used to solve for the modes propagating

in the waveguide:

r�

�
1

"r
r� ~H

�
= k20�r

~H (2)

where k20 = !2"0�0 is the free-space wavenumber. After decomposing the

�eld into a transversal, ~Ht, and longitudinal, Hz, components, equation (2)

can be separated into two parts, a vector equation that is entirely transverse

to az, where az is the base vector along the z- axis, and a scalar equation

that has only z-component

rt �

�
1

"r
rt �

~Ht

�
�

1

"r
(j�rtHz � �2 ~Ht) = k20�r

~Ht

�rt

�
1

"r
(rtHz + j� ~Ht)

�
= k20�rHz

(3)

where rt = ax@=@x + ay@=@y is the transverse delta operator. For conve-

nience, the same scaling as in [5] is introduced:

~ht = � ~Ht;

hz = �jHz

(4)

and (3) can be rewritten as:

rt �

�
1

"r
rt �

~ht

�
� k20�r

~ht =�
2

�
�1

"r

�
(rthz + ~ht) (5a)

rt

�
1

"r
(rthz + ~ht)

�
+ k20�rhz =0 (5b)

These equations are solved by using FEM with edge-based triangular

elements. Within each element �eld components are expanded in terms of

edge-based unknowns and appropriate edge-based shape functions [14]

~ht =

KtX
i=1

	i
~Bti(x; y);

hz =

KzX
i=1

�iBzi(x; y)

(6)
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where ~Bti(x; y) (i = 1; :::;Kt) and Bzi(x; y) (i = 1; :::;Kz) are vector and

scalar basis functions, respectively. A Galerkin procedure is used by testing

equation (5a) with vector test functions ~Ttj(x; y) = ~Btj(x; y) and equation

(5b) with scalar test functions Tzj(x; y) = Bzj(x; y). The following set of

coupled eigen-value equations is produced

�
Ctt 0

Czt Czz

� �
	

�

�
= �2

�
Dtt Dtz

0 0

� �
	

�

�
(7)

where

Ctt

ij
=

1

"r

ZZ
�l

n
(rt �

~Bti)(rt �
~Btj

o
ds� k20�r

ZZ
�e

n
~Bti

~Btj

o
dS

Czt

ij
=

1

"r

ZZ
�e

rtBzi
~BtjdS;

Czz

ij
=

1

"r

ZZ
�e

rtBzirtBzjdS � k20�r

Z Z
�e

BziBzjdS

Dtt

ij
=
�1

"r

ZZ
�e

n
~Bti

~Btj

o
dS;

Dtz

ij
=
�1

"r

ZZ
�e

~BtirtBzjdS

(8)

and �e is the area of the element. This eigenvalue problem is solved it-

eratively [16], taking advantage of the sparsity of the matrices [C] and [D]

[17].

3. Edge-based singular element

Our goal is to construct a singular element which can accurately model

singular behavior near a sharp edge (Fig. 1) and at the same time be compat-

ible with an ordinary edge-based element, i.e., produce continuous tangential

and allow for discontinuous normal components along the element edges. Ac-

cording to [1], [2] the �eld in the vicinity of the edge may be singular and in

that case behaves as

Hz = d0 + r�a0('; z) + r�+1a1('; z) + r�+2a2('; z) + : : :

~Ht = r��1~b0('; z) + r�~b1('; z) + r�+1~b2('; z) + : : :
(9)
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where (r; '; z) is the local polar coordinate system with the origin at the

edge as shown in Fig. 1. and the singularity coe�cient t depends on the

geometry and material properties as described in [18]. Actually, only the

transverse component is singular whereas longitudinal component has sin-

gular derivative. Moreover, only normal component of the transverse �eld is

allowed to become in�nite at the edge while the tangential component stays

�nite. Singular elements located around the edge are used to model this

singular behavior and thus enhance the e�ciency of the FEM.

Fig. 1. Conducting edge embedded in dielectric.

A singular element with local numbering of vertices denoted by 1, 2,

and 3, with node 1 being the singular point on the edge, is shown in Fig.

2. For convenience we introduce a triangular polar coordinate system (r,s)

that is related to the (x,y) coordinates by [15]

x = x1 + � [x2 � x1 + �(x3 � x2)]

y = y1 + � [y2 � y1 + �(y3 � y2)]
(10)

Hence, the normalized hz �eld component can be expressed as

hz = f0 + ��f0(�) + ��+1f1(�) + ��+2f2(�) + : : : (11)

In order to model this behavior the approximate hz is expanded in terms

of nodal based unknowns, �i, and singular scalar base (shape) functions, Bi.

hz =

KX
i=1

�iB
M

i
(�; �)

=

MX
m=0

mX
n=0

�mnR
M

m
(�)Lm

n
(�)

(12)
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Fig. 2. Singular element with coordinate system.

where coe�cient M represents the order of singularity approximation in the

radial direction. Distribution of nodes and the relationship between the

single (i) and double indexing (m;n) is shown in Fig. 3 for a second order

singular element.

Fig. 3. Single and double node numbering for hz-
base functions in a second order element.

Angular shape functions are usual Lagrange polynomials. Radial shape

functions, RM

m
(�), represent the singular behavior in the radial direction and

have the following form

RM

0 (�) = (1� ��)

MY
i=1

i6=m

��
i

M

�
i

M

RM

m
(�) =

��

i

M

�
LM
m
(�)

(13)
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such that RM

m
(�) is zero at all nodes except at node m and equal to one at

the node m.

According to Van Bladel [19] transverse �eld component in the vicinity

of the edge is quasistatic. Hence, we decompose the transverse �eld in the

singular element into a static (singular) and a dynamic (nonsingular) part.

In cases when the geometry of the waveguide cross-section supports singular

�elds they are accurately modeled by the singular (static) part. If the �eld

is non-singular then dynamic part will prevail and again properly model the

�eld behavior. Hence, the transverse �eld is expressed in terms of edge-based

unknowns, 	i, and edge-based vector base functions, ~Bi

~ht =

NX
i=1

	i
~Bi(�; �) (14)

where a few of the base functions are singular (quasi- static) and the rest of

them nonsingular (dynamic). Dynamic functions are the same as standard

trial functions for edge-element or have the same behavior along the element

edges. Singular functions are quasi-static in nature and can be obtained as

a gradient of a linear combination of nodal based scalar functions Bi

~Bk = rt

LX
j=1

ciB
Mi

i
(�; �)

=
X
j=1

cirtB
Mi

i
(�; �)

(15a)

and

BM

mn
= rtB

M

mn

=
l23~n23

2�e

@RM

m
(�)

@�
Lm
n
(�)�

l12~n12(1� �)

2�e�
RM

m
(�)

@Lm
n
(�)

@�

+
l31~n31�

2�e�
RM

m
(�)

@Lm
n
(�)

@�

(15b)

where ~n12; ~n23, and ~n31 are outward normals with respect to the triangle

edges 1� 2; 2� 3; and 3� 1, respectively. Constants ci in (15a) are chosen

in such way that the base function ~Bk has continuous tangential component

along the edge it is associated with, and zero tangential components at

the other two edges. As explained in [16], using Nedelec conditions [20]

a second order standard edge-element was derived with eight vector basis
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functions: six edge-based and two face-based as shown in Fig. 4. These

functions produce quadratic- normal and linear-tangential �eld along the

element edges (QN/LT).

In this case we choose two of the edge-based functions that are associ-

ated with the singular node 1, B3 and B5, to be singular and the other six

nonsingular. These eight functions can be expressed in the triangular polar

coordinate system in the following way

~B1 = �
l23
2�e

l12~n12�(1� �);

~B2 = �
l23

2�e

l31~n31��;

~B3 = rtB
2
11 + c

�
rtB

1
11 +

l12~n12
2�e

�
;

~B4 = �
l31

2�e

�
l23~n23�� +

l12~n12(1� �)

2

�
;

~B5 = rtB
2
10 + c

�
rtB

1
10 +

l31~n31

2�e

�
;

~B6 = �
l12

2�e

�
l23~n23�(1� �) +

l31~n31(1� �)

2

�

~B7 =
l23~n23
2�e

�4�(1 � �)�
l12~n12
2�e

4�(1 � �)(1 � �)

~B8 =
l23~n23

2�e

�4�(1 � �)�
l31~n31

2�e

4�(1 � �)�

(16)

where is c = 2�+1=(� � 1). All these base functions produce continuous tan-

gential component and discontinuous normal component along the triangle

sides. After substituting these base functions into (8) and performing all the

integrations in closed form, element matrices for the singular element were

calculated for the appropriate � .

4. Numerical results

A number typical waveguiding structures containing sharp edges have

been analyzed using two approaches. First, only ordinary QN/LT edge-

elements have been used, and second, both QN/LT and singular elements

have been included. Enhanced convergence of the method using edge-based

singular elements have been observed. Numerical results for the propagation

constant of di�erent modes in an L-shaped waveguide (Fig. 5) are shown in

Table 1. First row for each mode represents values obtained using ordinary
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Fig. 4. De�nition of vector base functions in
a second order QN/LT edge element.

and singular edge-based elements and the second row shows results obtained

by using ordinary elements only.

Fig. 5. L{shaped waveguide

It can be noted that the convergence of the results versus the number

of used elements is signi�cantly improved by employing singular elements in

the vicinity of the metal edge.

5. Conclusions

A new singular element compatible with edge-elements has been derived.

It provides continuous tangential and discontinuous normal component along

the element edges. Derivation is presented for the singular element that is
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Table 1. Propagation constant for �rst few modes propagating in an L-guide

Mode # Number of Nodes in Mesh

and type 6 20 44 66

1 TE 1.24370 1.21672 1.21537 1.21591

1.27111 1.22361 1.21871 1.21823

2 TE 1.89215 1.88185 1.88020 1.88010

1.96794 1.90437 1.88057 1.88041

3 TM 3.31816 3.08623 3.09511 3.09618

3.37880 3.16381 3.12055 3.09823

4 TE 3.42282 3.15327 3.14324 3.14220

3.46900 3.17342 3.15444 3.14207

5 TE 3.59736 3.15717 3.14343 3.14226

3.64270 3.40368 3.15490 3.14346

compatible with QN/LT edge-element. In fact, the �eld along the edge

common with the ordinary element has quadratic normal and linear tangen-

tial component whereas it has singular normal and nonsingular tangential

component at the edge. Out of eight base functions, six edge-based and

two face-based, two are chosen to be singular and in accordance with Van

Bladel's paper [19] are quasi-static with zero curl. The other six functions

are non-singular, with non-zero curl, and satisfy the same boundary condi-

tions on the edges as ordinary edge-based trial functions. This choice of base

functions preserves the sparsity of the FEM equations. All the functions are

express in a triangular polar coordinate system which allows one to perform

all the necessary integrations in closed form.

A number of typical waveguiding structures has been analyzed and the

improved convergence with use of singular elements has been observed. The

number of elements needed in the mesh is much smaller if the singular ele-

ments are used to model �eld in the immediate vicinity of the edge. Some

numerical results are presented for an L-shaped n.
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