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DESIGN OF THE FIRST ORDER DIGITAL

FIR DIFFERENTIATORS

Vlastimir D. Pavlovi�c and Predrag N. Leki�c

Abstract. In this paper, the original and general method for designing the

�rst order digital FIR di�erentiators of even and odd length, with simultane-

ous approximation of the prescribed magnitude and group delay responses is

presented. The proposed method represents an approach for FIR di�erentia-

tor frequency response approximation, directly in the complex domain and is

based on the least squares approximation method, with the originally modi�ed

eigen�lter method. It involves computing the elements and eigen-system of

the quadratic, real and symmetric matrix, by the simultaneous minimization

of the appropriate and originally de�ned quadratic measure error of the mag-

nitude and group delay responses in the de�ned frequency bands. The given

speci�cations of these two responses are incorporated in the minimization

procedure. The eigenvector corresponding to the smallest eigenvalue from the

computed matrix eigen-system presents the desired solution, i.e. the impulse

response coe�cients vector of the designed FIR di�erentiator. The weighting

coe�cients of the real and imaginary parts approximation, of the frequency

response �(!) and �(!) respectively, in the passband and stopband, are intro-

duced. By the appropriate choice of these coe�cient values, it is possible to

a�ect the achieved approximation quality and accuracy. FIR di�erentiators,

designed by this method do not posses neuther the antisymmetric feature of

their impulse response coe�cients, nor the strictly linear phase. Their pass-

band group delay level is approximately constant and di�ers (lower or higher)

from that of the corresponding linear phase FIR di�erentiators and can be

varied in a relatively wide range. With the same length, di�erentiators de-

signed by the proposed method have a lower passband magnitude response

error than the corresponding mini-max di�erentiators. In order to illustrate

its e�ectiveness, the numerical examples of their synthesis are also given.
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1. Introduction

Di�erentiators are devices whose output signal is equal to the �rst or

higher order derivative of the input signal. They have a broad application in

various practical signal processing systems, such as: control systems, various

communication systems, seismic systems, biomedical electronic devices etc.

Digital FIR di�erentiators (DD in the subsequent text) are devices whose

output signal samples are equal to the samples of the input signal derivative

(of �rst or higher order).

In a general case, DD can be designed by using many available numerical

di�erentiation formulas, such as : Gregory-Newton forward and backward

di�erence formulas or Bessel, Everett and Stirling central di�erence formulas.

Alternatively, they can be designed as nonrecursive digital �lters on the

basis of the frequency response of an ideal di�erentiator, or by Fourier series

method in conjunction with the Kaiser window function.

S.Usui and I.Amidror [1] have been proposed a method for DD design,

working in the region of the low frequencies, for biomedical signal process-

ing. The main aim of this method was not the high accuracy achievement,

but the possibility of the lower length DD design. Kumar and Dutta Roy

have been proposed the mathematical formulas for computing the weighting

coe�cients of the maximally linear �rst order DD, working in the regions

of high [2], middle [3] and low [4] frequencies of the full frequency band.

The same authors, together with M.Reddy, in [5], have been performed the

further expansion of this method, on the second and higher order DD design

for midband frequencies. Medlin [6] and Adams [7] have been suggested a

new design technique for maximally linear �rst and higher order DD in a

general sense. S.Sunder, W.S.Lu, A.Antoniou and Y.Su [8] have been pre-

sented the synthesis method for DD satisfying prescribed speci�cations, by

using optimization techniques. This method, somewhat, presents the hybrid

between the eigen�lter method and the Chebyshev mini-max approxima-

tion method. Rabiner and Schafer [9] have been used the algorithm from

reference [10] in order to design �rst order wide-band DD with mini-max

magnitude response relative error. Equiripple nonrecursive DD design, us-

ing weighted least-squares technique is described in [11]. The results of the

recent paper [12] analyze the magnitude response approximation technique

with the prescribed group delay level. This technique can be generalized and

reduced to the eigen�lter problem. Classic eigen�lter method [13], applied

to a linear phase DD design (of �rst and higher order) has been presented

by S.C.Pei and J.J.Shyu, [14],[15]. For the approximation of an ideal DD

frequency response, they had been used a pure real functions, given in the

form of weighted sums of sine (cosine) functions.
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Forementioned DD design methods are techniques for designing the lin-

ear phase DD (Cases 3 and 4 of linear phase FIR �lters, [16]). However,

for FIR �lter design, having lower time delay than the linear phase FIR �l-

ters, and approximately constant passband group delay level, it is needed to

solve the complex approximation problem. L.J.Karam and J.H.McClellan

[17] have been suggested the mini-max approximation technique, general-

ized on the real and imaginary cases of the frequency responses. This paper

includes the detailed analysis of particular solutions. Using this method,

it is possible to determine FIR �lter transfer function with real and imagi-

nary coe�cients. Chen and Parks [18] have been used the standard linear

programming algorithm. They have converted the complex Chebyshev ap-

proximation problem into a real domain by solving the overdetermined set

of linear equations, using the standard linear programming techniques. Stei-

glitz [19] has been successfully designed this �lters using linear programming

technique and the weighted Chebyshev error criterion. Both of these meth-

ods are rather complicated and require a considerable computing time and

computer memory space.

The method presented in this paper is more e�cient and faster in that

sense. In contrast to the forementioned DD design methods, this method

presents an approach for DD frequency response complex function approxi-

mation directly in the complex, and not in the real domain. Also, mentioned

methods clearly distinguish design cases to DD of odd and even length, in

sense that for each of these two cases hold particular design formulas, i.e.

forms of approximation functions. In contrast to this, the proposed method

can be considered as universal in that sense, because it gives equally good

results both for even and odd length DD design, without any exchange in the

design procedure and formulas. Moreover, using the proposed method it is

even possible, by introducing certain condition, to perform the design of odd

length full-band DD. The idea for introducing and modifying the weighting

coe�cients of the frequency response, �(!) and �(!) respectively, directly

in the complex domain, is applied in the approximation error de�nition, and

is taken from [20].

Complex approximation approach in the proposed method is performed

by the simultaneous minimization of the appropriate and originally de�ned

quadratic measure error of magnitude and group delay responses, in the de-

�ned frequency bands. Design speci�cations, satisfying these two responses,

are incorporated in this minimization procedure, which is used for calcula-

tion the elements and eigen-system of quadratic, real and symmetric ma-

trix. Eigenvector corresponding to the smallest eigenvalue from calculated

eigen-system, presents the desired solution and design aim, i.e. the impulse
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response vector coe�cients of the designed DD.

2. Development of the proposed method

Frequency response of an ideal DD with linear phase and length N , is

given by:

F (!) =M(!)ejP (!) = j!e
�j!� (1a)

that is

F (!) = FR(!) + jFI(!) =

�
! sin �! + j! cos �!; ! 2 passband

0; ! 2 stopband
(1b)

where in the passband:

FR(!) = ! sin(�!) (2a)

FI (!) = ! cos(�!) (2b)

and � is the passband group delay level.

Frequency response of the designed DD, with length N and real impulse

response a(n) ; n = 0; 1; : : : ; N � 1, is given by:

H(!) =

NX
n=0

a(n)e�j!n =

N�1X
n=0

a(n) cos(n!)� j

N�1X
n=0

a(n) sin(n!) =

=HR(!) + jHI(!)

(3)

where

HR(!) =

N�1X
n=0

a(n) cos(n!) (4a)

HI(!) = �

N�1X
n=0

a(n) sin(n!) (4b)

Let us de�ne the following vectors :

a = [a[0]; a[1]; : : : ; a[N � 1]]T (5)

c(!) = [1; cos(!); : : : ; cos[(N � 1)!]]T (6)

s(!) = [0; sin(!); : : : ; sin[(N � 1)!]]T (7)

where the superscript T denotes the vector transpose operation.
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Using relations (5), (6) and (7), expression (3) can be written in the

following form:

H(!) = a
T
c(!)� ja

T
s(!) (8)

while, relations (4a) and (4b), in the forms :

HR(!) = a
T
c(!) (9a)

HI(!) = �a
T
s(!) (9b)

respectively. Expression (8) is now used for the approximation of the desired

magnitude, M(!), and phase, P (!), responses of ideal DD, from (1a). More

exactly, in the de�ned frequency bands, the real, (4a), and imaginary, (4b),

parts of the designed frequency response are designed to approximate the

real, (2a), and imaginary, (2b), parts of the ideal DD frequency response,

respectively.

This approximation is performed by the quadratic measure error mini-

mization, in a general case de�ned as :

E =

Z
R

[F (!)H(!0)�H(!)F (!0)]
2
d! (10)

where R is the desired (de�ned) frequency band region (passband or stop-

band), and !0 is the passband reference frequency.

Introducing the weighting coe�cients, �(!) and �(!), for the real and

imaginary parts approximation respectively of the frequency response, in the

passband and stopband, which have the following form :

�(!) =

�
�p; ! 2 passband

�s; ! 2 stopband
(11a)

�(!) =

�
�p; ! 2 passband

�s; ! 2 stopband
(11b)

expression (10) can be written as :

E =�(!)

Z
R

[FR(!)HR(!0)�HR(!)FR(!0)]
2
d!+

+�(!)

Z
R

[FI(!)HI(!0)�HI(!)FI(!0)]
2
d!

(12)

In the above expression, in the passband case, instead of the indice R, it

is needed for the integration boundaries to take the passband cuto� frequen-

cies, and for �(!) and �(!), de�ned values of these coe�cients, �p and �p,
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respectively. Analogously, for the stopband case, instead of the indice R, for

the integration boundaries is needed to take the stopband cuto� frequencies,

and for �(!) and �(!), their de�ned values �s and �s, respectively. It is

emphasized that in the stopband hold: FR(!) = 0; FI(!) = 0.

Having in sight the previous discussion, expression (12), for F (!0) 6= 0,

can be written, in a general form:

E = �pERp + �pEIp + �sERs + �sEIs = Ep +Es (13)

where

Ep = �pERp + �pEI (14a)

Es = �sERs + �sEIs (14b)

and present

Ep- Total passband approximation error of the frequency response;

Es- Total stopband approximation error of the frequency response;

ERp- Passband approximation error of the frequency response real part;

EIp- Passband approximation error of the frequency response imaginary

part;

ERs- Stopband approximation error of the frequency response real part;

EIs- Stopband approximation error of the frequency response imaginary

part;

E- Total approximation error (of the total frequency response).

Substituting (2a); (2b); (4a) and (4b) in (12), expression (13) gets the

following form:

E = a
T [�pQRp + �pQIp + �sQRs + �sQIs]a = a

T
Qpa+ a

T
Qsa (15)

where

Qp = �pQRp + �pQIp (16a)

Qs = �sQRs + �sQI (16b)

present N �N matrices of the passband (Qp) and stopband (Qs). By com-

paring equations (13) and (15), it is obvious that :

Ep = a
T
Qpa (17b)

Es = a
T
Qsa (17b)

Taking into account former discussion, expression (15) can be written

as follows:

E = a
T [Qp +Qs]a = a

T
Qa (18)
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where

Q = Qp +Qs (19)

is the N � N quadratic, real and symmetric matrix in general case, whose

elements and eigensystem are determined. Its elements values depend on

the design requirements, i.e. on given speci�cations.

Expression (18) for total approximation error, presents the formulation

of the eigen�lter problem [14] in a least squares sense. Vector a in this

expression is the eigenvector of the matrix Q. Eigenvector a of the matrix

Q, corresponding to its smallest eigenvalue is the vector minimizing the

error (18), and thus is the desired impulse response coe�cient vector of the

designed DD from equation (3).

Introduction of the weighting coe�cients �(!) and beta(!), for approx-

imation the real and imaginary parts of the frequency response respectively,

enables to a�ect the achieved approximation quality and accuracy, by ap-

propriate choice of their values in the corresponding frequency bands. Cal-

culating integrals in equation (12), expressions for the elements of matrices

Qp and Qs are obtained in a compact, explicit, agebraic form:

qp(n;m) = �p

( 
!
3 cos(m!0 � n!0)

12
+
! cos(2�!) cos(m!0 � n!0)

8�2
�

!
3 cos(m!0 + n!0)

12
�
! cos(2�!) cos(m!0 + n!0)

8�2
+

!0
2 sin((m� n)!)

4 (m� n)
+
!0

2 cos(2�!0) sin((m� n)!)

4 (m� n)
�

!0
2 sin((m+ n)!)

4 (m+ n)
�
!0

2 cos(2�!0) sin((m+ n)!)

4 (m+ n)
�

cos(m!0 � n!0) sin(2�!)

16�3
+
!
2 cos(m!0 � n!0) sin(2�!)

8�
+

cos(m!0 + n!0) sin(2�!)

16�3
�
!
2 cos(m!0 + n!0) sin(2�!)

8�
+

!!0 cos((n� �)!) sin(m!0 � �!0)

4 (n� �)
+
!!0 cos((n+ �)!) sin(m!0 � �!0)

4 (n+ �)
�

!0 sin((n� �)!) sin(m!0 � �!0)

4(n� �)
2 �

!0 sin((n+ �)!) sin(m!0 � �!0)

4(n+ �)
2 +

!!0 cos((m+ �)!) sin(n!0 � �!0)

4 (m+ �)
�
!0 sin((m� �)!) sin(n!0 � �!0)

4(m� �)
2 �
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!0 sin((m+ �)!) sin(n!0 � �!0)

4(m+ �)
2 +

!!0 cos((n+ �)!) sin(m!0 + �!0)

4 (n+ �)
�

!0 sin((n� �)!) sin(m!0 + �!0)

4(n� �)
2 �

!0 sin((n+ �)!) sin(m!0 + �!0)

4(n+ �)
2 +

!!0 cos((m� �)!) sin(n!0 � �!0)

4 (m� �)
+
!!0 cos((n� �)!) sin(m!0 + �!0)

4 (n� �)
+

!!0 cos((m� �)!) sin(n!0 + �!0)

4 (m� �)
+
!!0 cos((m+ �)!) sin(n!0 + �!0)

4 (m+ �)
�

!0 sin((m� �)!) sin(n!0 + �!0)

4(m� �)
2 �

!0 sin((m+ �)!) sin(n!0 + �!0)

4(m+ �)
2

!�����
!hp

!lp

)
+

�p

( 
!
3 cos(m!0 � n!0)

12
�
! cos(2�!) cos(m!0 � n!0)

8�2
+

!
3 cos(m!0 + n!0)

12
�
! cos(2�!) cos(m!0 + n!0)

8�2
+

!0
2 sin((m� n)!)

4 (m� n)
�
!0

2 cos(2�!0) sin((m� n)!)

4 (m� n)
+

!0
2 sin((m+ n)!)

4 (m+ n)
�
!0

2 cos(2�!0) sin((m+ n)!)

4 (m+ n)
+

cos(m!0 � n!0) sin(2�!)

16�3
�
!
2 cos(m!0 � n!0) sin(2�!)

8�
+

cos(m!0 + n!0) sin(2�!)

16�3
�
!
2 cos(m!0 + n!0) sin(2�!)

8�
+

!!0 cos((n+ �)!) sin(� (m!0) + �!0)

4 (n+ �)
�

!0 sin((�n+ �)!) sin(� (m!0) + �!0)

4(�n+ �)
2 �
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!0 sin((n+ �)!) sin(� (m!0) + �!0)

4(n+ �)
2 +

!!0 cos((n+ �)!) sin(m!0 + �!0)

4 (n+ �)
�

!0 sin((�n+ �)!) sin(m!0 + �!0)

4(�n+ �)
2 �

!0 sin((n+ �)!) sin(m!0 + �!0)

4(n+ �)
2 +

!!0 cos((m+ �)!) sin(� (n!0) + �!0)

4 (m+ �)
�

!0 sin((�m+ �)!) sin(� (n!0) + �!0)

4(�m+ �)
2 �

!0 sin((m+ �)!) sin(� (n!0) + �!0)

4(m+ �)
2 +

!!0 cos((�m+ �)!) sin(n!0 + �!0)

4 (�m+ �)
+

!!0 cos((m+ �)!) sin(n!0 + �!0)

4 (m+ �)
�

!0 sin((�m+ �)!) sin(n!0 + �!0)

4(�m+ �)
2 �

!!0 cos((�n+ �)!) sin(� (m!0) + �!0)

4 (�n+ �)
+

!!0 cos((�n+ �)!) sin(m!0 + �!0)

4 (�n+ �)
+

!!0 cos((�m+ �)!) sin(� (n!0) + �!0)

4 (�m+ �)
+

!0 sin((m+ �)!) sin(n!0 + �!0)

4(m+ �)
2

!�����
!hp

!lp

)
;

0 � n;m � N � 1; n 6= m (20a)

that is, for the matrix Qp elements outside its main diagonal.
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qp(k; k) = �p

( 
!
3

12
+
!!0

2

4
�
! cos(2�!)

8�2
+

!
3 cos(2k!0)

12
�
! cos(2�!) cos(2k!0)

8�2
�
!!0

2 cos(2�!0)

4
+

!0
2 sin(2k!)

8k
+

sin(2�!)

16�3
�
!
2 sin(2�!)

8�
+

cos(2k!0) sin(2�!)

16�3
�
!
2 cos(2k!0) sin(2�!)

8�
�

!0
2 sin(2k! � 2�!0)

16k
+
!!0 cos((�k + �)!) sin(� (k!0) + �!0)

2 (�k + �)
+

!!0 cos((k + �)!) sin(� (k!0) + �!0)

2 (k + �)
�

!0 sin((�k + �)!) sin(� (k!0) + �!0)

2(�k + �)
2 �

!0 sin((k + �)!) sin(� (k!0) + �!0)

2(k + �)
2 +

!!0 cos((�k + �)!) sin(k!0 + �!0)

2 (�k + �)
+

!!0 cos((k + �)!) sin(k!0 + �!0)

2 (k + �)
�

!0 sin((�k + �)!) sin(k!0 + �!0)

2(�k + �)
2 �

!0 sin((k + �)!) sin(k!0 + �!0)

2(k + �)
2 �

!0
2 sin(2k! + 2�!0)

16k

!)�����
!hp

!lp

+
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�p

( 
!
3

12
+
!!

2
0

4
+
! cos(2�!)

8�2
�
!
3 cos(2k!0)

12
�

! cos(2�!) cos(2k!0)

8�2
+
!!

2
0 cos(2�!0)

4
�
!
2
0 sin(2k!)

8k
�

sin(2�!)

16�3
+
!
2 sin(2�!)

8�
+

cos(2k!0) sin(2�!)

16�3
�
!
2 cos(2k!0) sin(2�!)

8�
�

!
2
0 sin(2k! � 2�!0)

16k
+
!!0 cos((k � �)!) sin(k!0 � �!0)

2 (k � �)
+

!!0 cos((k + �)!) sin(k!0 � �!0)

2 (k + �)
�
!0 sin((k � �)!) sin(k!0 � �!0)

2 (k � �)
2 �

!0 sin((k + �)!) sin(k!0 � �!0)

2 (k + �)
2 +

!!0 cos((k � �)!) sin(k!0 + �!0)

2 (k � �)
+

!!0 cos((k + �)!) sin(k!0 + �!0)

2 (k + �)
�
!0 sin((k � �)!) sin(k!0 + �!0)

2 (k � �)
2 �

!0 sin((k + �)!) sin(k!0 + �!0)

2 (k + �)
2 �

!
2
0 sin(2k! + 2�!0)

16k

!�����
!hp

!lp

)

k = 1; 2; : : : ; N � 1

(20b)

for k = 1; 2; : : : ; N�1 , i.e. for the matrix Qp elements on its main diagonal.

qp(0; 0) = �p

( 
!
3

6
+
!!0

2

2
�
! cos(2�!)

4�2
�
!!0

2 cos(2�!0)

2
�

!0 cos(�! � �!0)

�2
+
!0 cos(�! + �!0)

�2
+

sin(2�!)

8�3
�

!
2 sin(2�!)

4�
+
!!0 sin(� (�!) + �!0)

�
+
!!0 sin(�! + �!0)

�

!)�����
!hp

!lp

(20c)

for the �rst element of matrix Qp.
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qs(n;m) = �s1

�
sin(n�m)!

2(n�m)
+

sin(n+m)!

2(n+m)

�
(!0 sin �!0)

2

�����
!h1s

!l1s

+

�s2

�
sin(n�m)!

2(n�m)
+

sin(n+m)!

2(n+m)

�
(!0 sin �!0)

2

�����
!h2s

!l2s

+

�s1

�
sin(n�m)!

2(n�m)
�

sin(n+m)!

2(n+m)

�
(!0 cos �!0)

2

�����
!h1s

!l1s

+

�s2

�
sin(n�m)!

2(n�m)
�

sin(n+m)!

2(n+m)

�
(!0 cos �!0)

2

�����
!h2s

!l2s

+

(21a)

for 0 � n; m � N � 1; n 6= m, i.e. for the matrix Qs elements outside its

main diagonal.

qs(k; k) = �s1

��
1

2
�

sin 2k!

4k

�
(!0 sin �!0)

2

� �����
!hs1

!ls1

+

�s2

��
1

2
�

sin 2k!

4k

�
(!0 sin �!0)

2

� �����
!hs2

!ls2

+

�s1

��
1

2
+

sin 2kx

4k

�
(!0 cos �!0)

2

� �����
!hs1

!ls1

+

�s2

��
1

2
+

sin 2kx

4k

�
(!0 cos �!0)

2

� �����
!hs2

!ls2

(21b)

for k = 1; 2; : : : ; N �1, i.e. for the matrix Qs elements on its main diagonal.

qs(0; 0) = �s2(� � !s2)(!0 sin �!0)
2 + �s1!s1(!0 sin �!0)

2 (21c)

for the �rst element of matrix Qs.

Expressions (20){(21) are derived for the case of band{pass digital dif-

ferentiator, but they are general enough and include all other particular

solutions: for low{pass digital di�erentiator is

�s1 = 0; �s2 = �s; �s1 = 0; �s2 = �s; !lp = 0; !hs = �

for high pass digital di�erentiator is:

�s1 = �s; �s2 = 0; �s1 = �s; �s2 = 0; !hp = �; !lp = 0
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and for full{band digital di�erentiator is

�s1 = �s2 = 0; �s1 = �s2 = 0; !lp = 0; !hp = �

which means that in the full{band case is

qs(n;m) � 0; 8 n;m

i.e. the matrix Qs is the zero{matrix.

Indices !h and !l in above expressions respectively denote the upper

and lower cuto� frequencies of the passband (subscript p) and stopband

(subscript s).

Basing on the equation (19), the matrix Q elements are, �nally, given

by:

q(n;m) = qp(n+m) + qs(n;m) (22a)

q(k; k) = qp(k; k) + qs(k; k) (22b)

q(1; 1) = qp(1; 1) + qs(1; 1) (22c)

for the elements outside (22a), and on (22b) its main diagonal, so as its �rst

element (22c). It can be seen, from equations (20){(22), that the matrix Q

elements values depend on the given parameter speci�cations, which are:

N - designed DD length ;

!hp - upper passband cuto� frequency;

!lp - lower passband cuto� frequency;

!hs - upper stopband cuto� frequency;

!ls - lower stopband cuto� frequency;

�p - real part approximation weighting coe�cient in the passband;

�s - real part approximation weighting coe�cient in the stopband;

�p - imaginary part approximation weighting coe�cient in the passband;

�s - imaginary part approximation weighting coe�cient in the stopband;

� - desired passband group delay level;

!0 - passband reference frequency.

By introducing the condition that the speci�cation parameter � has the

value which is not an integer, it is even possible to design the odd length

full-band DD. Using presented method, design of the large number of var-

ious �rst order DD types with even and odd length is performed, such as:

full{band, low{pass, band{pass and high{pass. Their design examples with

corresponding speci�cation parameters values are presented in the next sec-

tion.
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3. Design examples

Example 1

Design of FIR full{band di�erentiator with following speci�cation pa-

rameters values: N = 32; � = 9:5; !0 = 0:5�; � = 0:01; � = 0:99; !lp =

0; !hp = �.

Fig. 1. FIR full{band di�erentiator

Example 2

Design of FIR low{pass di�erentiator with following speci�cation pa-

rameters values: N = 31; � = 11:5; !0 = 0:15�; �p = 0:45; �p = 0:55; �s =

0:1�p; �s = 0:1�p; !lp = 0; !hp = 0:3�; !ls = 0:4�; !hs = �.
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Fig. 2. FIR low{pass diferentiator

Example 3

Design of FIR high{pass di�erentiator with following speci�cation pa-

rameters values: N = 32; � = 9:5; !0 = 0:85�; �p = 0:55; �p = 0:45; �s =

0:1�p; �s = 0:1�p; !lp = 0:7�; !hp = �; !ls = 0; !hs = 0:6�.
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Fig. 3. FIR high{pass diferentiator

Example 4

Design of FIR band{pass di�erentiator with following speci�cation pa-

rameters values: N = 31; � = 15:5; !0 = 0:5�; �p = �p = 0:5; �s1 =

10�p; �s1 = 10�p; �s2 = 0:1�p; �s2 = 0:1�p; !ls1 = 0; !hs1 = 0:1�; !lp =

0:2�; !hp = 0:8�; !ls2 = 0:9�; !hs2 = �.
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Fig. 4. FIR band{pass diferentiator

4. Conclusion

The design method presented in this paper contains the new contribu-

tion to the global design of the �rst order FIR di�erentiators with prescribed

magnitude and group delay responses. In comparison to analogous meth-

ods, this method is very fast, easy and e�ective, because it does not involve

iterative calculations. This method presents the approach for the FIR di�er-

entiator frequency response approximation, directly in the complex, and not

in the real domain, and is based on the eigen�lter method modi�ed in the

original manner. The elements of matrix Q are determined in the compact,
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explicit, algebraic form. FIR di�erentiators, designed by this method posses

neither the antisymmetric feature of their impulse response coe�cients, nor

the strictly linear phase. They have approximately constant passband group

delay level, which di�ers (lower or higher) from that of the corresponding

linear-phase FIR di�erentiators and can be varied in a relatively wide range.

Their passband magnitude response error, with the same length N, is lower

than that of the corresponding mini-max FIR di�erentiators. However, the

problem of the optimal solution detection is open and depends on design

speci�cations, because the performed research has shown that, in principle,

better group delay response corresponds to a higher passband magnitude

response error, and vice versa.
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