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A METHOD FOR SPACE-FREQUENCY

IMAGE ANALYSIS

Ljubi�sa Stankovi�c, Srdjan Stankovi�c

and Zdravko Uskokovi�c

Abstract. An e�cient method for two-dimensional time-frequency analysis,
derived from the analysis of the Wigner Distribution (WD) de�ned in the
frequency domain, is presented. This method provides some substantial ad-
vantages over the WD. The well known cross-terms e�ects are reduced or
completely removed; the oversampling of signals is shown to be unnecessary;
the computation time can be signi�cantly reduced, as well. The theory is
illustrated by a numerical example.

1. Introduction

Time-frequency signal analysis attracted the attention of many research-

ers in the recent years, which is documented in [1],[2], and references therein.

A two-dimensional time-frequency distribution (TFD) of a signal f(x; y)

should satis�e the following basic properties:

1

(2�)2

Z Z Z Z
MTFD(!x; !y; x; y)d!xd!ydxdy = Ef (1)

1

(2�)2

Z Z
MTFD(!x; !y; x; y)d!xd!y =j f(x; y) j

2

�

Z Z
MTFD(!x; !y; x; y)dxdy =j F (!x; !y) j

2

(2)

where: Ef denotes the energy of f(x; y); F (!x; !y) is a two-dimensional

Fourier transform of f(x; y); d!xd!y and dxdy are two-dimensional di�er-

ential elements. An in�nite number of distributions satisfying (1) and (2)
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can be de�ned - the two-dimensional extension of the Cohen class of distri-

butions, [1].

The above relations do not provide any information about the local

distribution of energy at a point (!x; !y; x; y); therefore, it is necessary to

de�ne some more speci�c requirements as compared to (1) and (2), and

they are presented in Section 2. Based on these requirements, an e�cient

two-dimensional time-frequency distribution is developed, extending our pre-

viously de�ned one-dimensional method, [4,6,7,8].

2. Local frequency presentation

Let us take a two-dimensional signal:

f(x; y) = g(x; y)ej�(x;y) (3)

with g(x; y) slow-varying two-dimensional function. The associated local

frequency at a point is de�ned as (!x; !y) = r�(x; y) =~ix�
0

x
+~iy�

0

y
, where

�0

x
� @�(x; y)=@x and �0

y
� @�(x; y)=@y; with r denoting the Hamiltonian

operator. The ideal TFD for the above signal has the local power j g(x; y) j2

concentrated at the local frequency:

ITFD(!x; !y; x; y) = (2�)2 j g(x; y) j2 �(!x � �0

x
; !y � �0

y
): (4)

This form has already been de�ned and used in the one-dimensional case,

[5,7,11]. We will now compare the commonly used TFD with the one de�ned

by (4).

2.1 Two-dimensional short time Fourier transform

The Short Time Fourier Transform (STFT) of the signal f(x; y) is de-

�ned by

STFT (!x; !y; x; y) =

Z Z
f(x+ �; y + �)w�(�; �)e�(j!x�+!y�)d�d� (5)

where w�(�; �) denotes a two-dimensional, usually even and real-valued,

window function. It will be assumed that w(�; �) = 0 holds outside the

bounded two-dimensional region D � R2.

Substituting signal (3) into (5) and expanding �(x + �; y + �) into a
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Taylor series1 around (x; y), we obtain:

STFT (!x; !y; x; y) =
1

(2�)2
g(x; y)ej�(x;y)�(!x � �0

x
; !y ��0

y
)

� �!x!yW (!x; !y) � �!x;!yFT

�
ej

(~vr)2

2! �(x1;y1)

� (6)

where ��!x;!y denotes a two-dimensional convolution operator with respect

to !x; !y; and g(x; y) is treated as a constant inside the window w(�; �), i.e.,

g(x+ �; y + �)w(�; �) �= g(x; y)w(�; �):

If the second and higher-order partial derivatives of �(x; y) may be

neglected in (6), then the associated spectrogram (squared magnitude of the

STFT) becomes:

SPEC(!x; !y; x; y) = j STFT (!x; !y; x; y) j
2=

j g(x; y) j2 W 2(!x ��0

x
; !y � �0

y
):

(7)

Observe that the spectrogram (7) exhibits all desirable properties of

the ideal distribution (4), provided the behavior of W 2(!x; !y) is close to

(2�)n�(!x; !y). If, on the other hand, higher-order partial derivatives are

not negligible, the spectrogram contains artifacts even for the ideal behavior

of W (!x; !y).

2.2 Two-dimensional Wigner distribution

Pseudo Wigner Distribution (PWD):

PWD(!x; !y; x; y) =

Z Z
f(x+

�

2
; y +

�

2
)

� f�(x� �=2; y � �=2)ws(�; �)e
�(j!x�+!y�)d�d�

(8)

with (�; �) = w(�=2; �=2)w�(��=2; �=2) is very commonly used in the time-

frequency analysis. For signals (3), upon substitution in (8) and expansion

1Taylor series for an n-dimensional function is of the form:

�(~r + ~v) =

m�1X

i=0

(~vr)i

i!
�(~r) +

(~vr)m

m!
�(~r1)

with ~r1 = ~r + ~v1; and 0 < v1h < v
h
for each h = 1; 2; : : : ; n.
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of �(x+�=2; y+�=2) and �(x��=2; y��=2) into Taylor series, the following
expression for the PWD is obtained:

PWD(!x; !y; x; y) =
1

(2�)2
j g(x; y) j2 �(!x � �0

x
; !y � �0

y
)

� �!x!yWs(!x; !y) � �!x!yFT

2
64ej2

(~vr)2

3!L2
�(x1;y1)

3
75 :

(9)

The PWD provides an ideal time-frequency representation if the third and

higher-order partial derivatives of �(x; y) are negligible. An improvement

over the STFT is obvious.

3. Two-dimnensional L-Wigner distribution

Using the L-Wigner distribution (LWD), de�ned by:

LWD(!x; !y; x; y) =

Z Z
fL(x+ �=2L; y + �=2L)

� f�L(x� �=2L; y � �=2L)wL(�; �)e
�j!x�+!y�d�d�

with wL(�; �) = w(�=2L; �=2L)w�(��=2L; �=2L), further improvement of

energy concentration may be achieved. For the signal of the form (3) we

have:

LWD(!x; !y; x; y) =
1

(2�)2
j g(x; y) j2L �(!x � �0

x
; !y � �0

y
)

� �!x!yWs(!x; !y) � �!x!yFT

�
ej

(~vr)2

2L �(x1;y1)

�

Taking L = 1, the WD is obtained. The properties of LWD can be

easily derived following the one-dimensional case given in [5,18,19].

4. Analysis of multicomponent signals

We will now consider a two-dimensional multicomponent signal given

by

f(x; y) =

pX
i=1

gi(x; y)e
j�i(x;y) (10)

where the functions gi(x; y); i = 1; ::; p, belong to the same class as g(x; y)

in (3).
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As before, the spectrogram for signal (10) is:

SPEC(x; y; !x; !y) =

pX
i=1

pX
k=1

gi(x; y)gk(x; y)e
j[�i(x;y)��k(x;y)]

�W [!x � �0

xi
; !y � �0

yi
]W �[!x � �0

xk
; !y � �0

yk
]

(11)

where the artifacts due to higher-order partial derivatives of �i(x; y); i =

1; 2; : : : ; p, are neglected, i.e. r�i(x; y) is treated as a constant vector inside

w(x; y).

The cross-terms are absent from the spectrogram, provided the condi-

tion:

W [!x � �0

xi
; !y � �0

yi
]W �[!x � �0

xk
; !y ��0

yk
] = 0 for any (!x; !y)

and i 6= k or k r�i(x; y)�r�k(x; y) k> Wl

(12)

is satis�ed; k � k denotes an appropriately de�ned norm in R2. This means

that cross-terms do not appear if the distance between local frequencies

is greater than the maximal width of the W (!x; !y) along the direction
~̀= r�i(x; y)�r�k(x; y), connecting the i-th and k-th local frequency. In

that case:

SPEC(x; y; !x; !y) =

pX
i=1

j gi(x; y) j
2 W 2[!x � �0

xi
; !y � �0

yi
]: (13)

The PWD, de�ned by (8), may be expressed as:

PWD(x; y; !x; !y) =
1

�2

Z Z
STFT (x; y; !x + �x; !y + �y)

�STFT �(x; y; !x � �x; !y � �y)d�xd�y:

(14)

From (6) and (14), appropriately adjusted to account for the class of signals

de�ned by (10) and neglecting the artifacts, one obtains:

PWD(x; y; !x; !y) =
1

�2

pX
i=1

pX
k=1

gi(x; y)gk(x; y)e
j[�i(x;y)��k(x;y)]

�

Z Z
W [!x+�x� �0

xi
; !y+�y � �0

yi
]

�W �[!x� �x� �0

xi
; !y� �y� �0

yi
]d�xd�y:

(15)



230 Facta Universitatis ser.: Elect. and Energ. vol. 8, No.2 (1995)

As before, the integrand in (15) is nonzero for:

~! + ~� �r�i(x; y) 2 D! and ~! � ~� �r�k(x; y) 2 D! (16)

meaning that PWD(x; y; !x; !y) 6= 0; for:

~! 2 D!(i; k) :
~! � [r�i(x; y) +r�k(x; y)]

2
2 Dw

and ~� 2 D�(i; k) :
~� � [r�i(x; y)�r�k(x; y)]

2
) 2 D!

(17)

where the Fourier transform W (!x; !y) of w(x; y) is assumed to be nonzero

only inside a bounded region Dw � R2, and Dw is convex and symmetric

with respect to the origin (i.e. w(x; y) is real), and ~! = (!x; !y), ~� = (�x; �y).

This means that the auto-terms (i = k) are concentrated at the local

auto-frequencies of each component of signal (10), i.e. at ~!i = r�i(~r); i =

1; 2; : : : ; p, while the cross-terms are centered between the corresponding

auto-frequencies. Relation (17) also implies that, along the axes of the two-

dimensional convolution ~�, all auto-terms are concentrated in the neighbor-

hoods of ~� = 0: The cross-terms are dislocated from the ~� origin. Having

this in mind, we conclude that the cross-terms may be removed from the

PWD of a multicomponent signal, and at the same time the integration

over auto-terms performed, if the convolution (17) is evaluated within a

two-dimensional window function P (~�), in the following way:

MWD(x; y; !x; !y) =
1

�2

Z Z
P (�x; �y)STFT (x; y; !x + �x; !y + �y)

� STFT �(x; y; !x � �x; !y � �y)d�xd�y

(18)

where the region of support Dp of the window function P (�x; �y) must com-

ply with the conditions de�ned in (17), i.e. Dp � Dw � D�(i; i) and

Dp

T
D�(i; k) = ; for i 6= k.

The distribution (18) is derived from the condition that its auto-terms

are equal to the auto-terms in the WD. But, in contrast to the WD, this

distribution is cross-terms free (under the described conditions). Note that

the distribution (18) does not satisfy the marginal properties in the case

of multicomponent signals. Many other distributions have been developed

with the purpose of the cross-terms' reduction, [1,12,13,16]. A detailed com-

parison of these distributions, in the one dimensional case, may be found in

[9].

Distribution (18), besides its e�ciency in cross-terms removal and the

preservation of the auto-terms presentation quality as in the WD, leads to a

numerically more e�cient method than the WD realization itself. This will

be shown in Section 4 (for one-dimensional case see [4,6,7]).
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5. Numerical considerations

The modi�ed WD is compared with the conventional PWD, with re-

spect to the number of operations needed for their respective numerical

computations.

The discrete two-dimensional PWD is of the form:

WD(n1; n2; k1; k2) = 4

2N�1X
m1=0

2N�1X
m2=0

x(n1 +m1; n2 +m2)

� x�(n1 �m1; n2 �m2)e
�j

4�

2N
(k1m1+k2m2)

(19)

where N is the number of samples, determined according the sampling the-

orem.

The modi�ed WD, eq.(18), may be expressed in the discrete form for a

rectangular window Pd(i1; i2), as:

MWD(n1; n2;k1; k2) =j STFT (n1; n2; k1; k2) j
2

+ 2

LX
i1=0

LX
i2=1

RealfSTFT (n1; n2; k1+i1; k2+i2)

� STFT �(n1; n2; k1� i1; k2�i2)g

+ 2

LX
i1=1

0X
i2=�L

RealfSTFT (n1; n2; k1+i1; k2+i2)

� STFT �(n1; n2; k1�i1; k2�i2)g

(20)

with L1 = L2 = L, where 2L1 + 1 and 2L2 + 1 represent the widths of two-

dimensional window Pd(i1; i2). Sampling in the STFT is de�ned by sampling

theorem, and so is in the modi�ed WD due to Pd(i1; i2).

The computation time may be reduced using an iterative procedure for

computation of the STFT:

STFT (n1; n2 + 1; k1; k2) = fSTFT (n1; n2; k1; k2)+

Fn1
[x(n1; n2 +N)]�Fn1

[x(n1; n2)]ge
j

2�

N
k2

�

STFT (n1 + 1; n2; k1; k2) = fSTFT (n1; n2; k1; k2)+

Fn2
[x(n1 +N;n2)]�Fn2

[x(n1; n2)]ge
j

2�

N
k1

(21)
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where Fn1
; Fn2

; are one-dimensional Fourier transforms, and the window

w(�; �) is shaped as a rectangle.

Numbers of numeric operations required for the direct realization of the

PWD de�ned by (19) (using the FFT routines), as well the numbers for the

modi�ed WD, eq.(20), are given in Table 1.

Table 1. The numbers of complex operations required for the realization
of Wigner distribution and modi�ed Wigner distribution

Method Complex additions Complex multiplications

Diredt WD calculation 4N2(log
2
N + 1) 2N2(log

2
N + 2)

Proposed method N2(2 log
2
N + L2 + L) N2(2 log

2
N + L2 + 1=2)

Proposed method with N2(2 + L2 + L) N2(L2 + L+ 3=2)

STFT iterations

Let us compare the number of multiplications needed for the compu-

tation of (19) with that in (20), taking into account (21). Savings by the

proposed method are achieved if the following inequality holds:

2(log 2N + 2) > (L2 + L+
3

2
): (22)

To illustrate this point, take, for example, N = 64: Savings in the number of

computations are achieved if L � 3; i.e. the width of the window Pd(i1; i2)

is less or equal to 7 � 7: Superiority of the proposed method is even more

evident if we consider the required number of additions.

6. Numerical example

Consider the two-dimensional signal:

f(x; y) = cos[20�(x � 0:75)2 + 22�(y � 0:75)2]+

0:5ej[(�100 cos �x
2 �100 cos �y

2 )]

in the range: jxj < 0:75; jyj < 0:75: This signal belongs to the class (10).

We have applied the Hanning window whose widths along x and y axes

are Wx =Wy = 1: For the computation of the STFT we have taken N = 64

samples, while the corresponding number for the computation of the PWD

is M = 2N = 128 samples. The STFT, the PWD and modi�ed WD are

computed at the point (x; y) = (�0:25;�0:25), and the results are presented

in Fig. 1.
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Fig. 1. Space{frequency signal representation at the point (0; 0)

6. Conclusion

Commonly used two-dimensional time-frequency distributions are com-

pared with the distribution which ideally represents the local frequency.

A numerically e�cient method for cross-terms reduction or removal in the

Wigner distribution is proposed.
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