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Abstract. This paper is related to the experimental design of the RCA’s 32-
bit GaAs microprocessor on a single VLSI chip. The baseline architecture for
this design was a Stanford University MIPS like machine which implements
a software mechanism for the control of sequencing hazards. The RCA’s
GaAs architecture implements the same mechanism, but enhanced through
the incorporation of the ”ignore” instruction. This paper tries to provide an
answer on how much does the incorporation of the ”ignore” instruction speed
up the execution of the compiled HLL code. The approach based on the
”ignore” instruction is compared with both the SU-MIPS and the MIPS-X
approaches to the problem, using both benchmarking and tracing.

1. Introduction

Stanford University MIPS architecture is well known [1], [20]. It uses
a software mechanism for the control of sequencing hazards. At compile
time, the branch delay slots are filled in using the algorithm of Gross and
Hennessey [2], and the remaining slots are filled in with NOOPs. Advantages
and disadvantages of this approach are discussed in a number of papers
(e.g., [3]).

One of the disadvantages of this approach is that in relatively deep
pipelines (as may be the case with pipelines of GaAs microprocessors) the
percentage of NOOPs may increase drastically, which has a negative effect on
the execution time of the code. This negative effect comes from the fact that
the effective size of the cache memory becomes smaller when the percentage
of NOOPs increases.
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The problem can be briefly described in the following way. If the code
contains no NOOPs, the percentage of loops that can fully fit into the cache
of a given size is determined by the cache size (other factors also have an
impact, but the impact of the cache size is of primary importance). For the
same cache size, if the code contains NOOPs, the percentage of loops that
can fully fit into the cache will decrease, and consequently the cache miss
ratio will increase.

An important issue here is the penalty to be paid for each cache miss.
The miss-related penalty is typically expressed in terms of the number of
wasted clock cycles. Since this study is oriented to GaAs technology, the
penalty for a cache miss may be fairly high (this depends on how advanced
is the used packaging and interconnecting technology). Consequently, mini-
mizing the number of NOOPs is of crucial importance.

There are a number of techniques for increasing the efficiency of branch-
ing. Some widely referenced papers on this subject include, but are not lim-
ited to [4], [5], [6], [7], [8], and [9]. However, the method implemented in the
RCA’s machine is different. As already indicated, it is based on the usage
of the ”ignore” instruction, and is described in [10].

2. The ”Ignore” Instruction

The essence of the ”ignore” instruction based solution is as follows.
The ”ignore” instruction is a separate instruction which is inserted into the
branch delay slot, after the last useful instruction that is moved into that
same slot, from elsewhere. The ”ignore” instruction consists of the opcode
field and the ”ignore count” field. The value of the ”ignore count” field
determines how many cycles to follow are to be ignored. Therefore, the
ignoring of the cycles to follow is done through a hardware mechanism rather
than a software mechanism. Consequently, no NOOPs will be present in the
code, and the cache hit ratio will not be affected in the above described way.

As far as the details, the solution to be studied here works as follows.
The Gross/Hennessey algorithm is applied first, in the same way as in the
architecture which fully relies on the software interlock. A certain number
of branch delay slots will be filled in that way, and the ”ignore” instruction
(with a properly set ”ignore count”) is inserted next.

One drawback of the ”ignore” instruction is that the cycle time of the
microprocessor may have to be increased, due to the incorporation of the
hardware control mechanism. However, the complexity of the ”ignore” in-
struction related hardware control mechanism (especially in the case of the
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RISC machines with a relatively simple state transition diagram) is much
smaller compared to the complexity of the ”conventional” hardware interlock
mechanism. Therefore, the impact on the length of the clock cycle should
be negligible, and is not included into this study.

3. Conditions of this Study

The architectures used in the first part of this study (benchmarking) are
the standard Stanford University MIPS silicon architecture (architecture #1)
and the RCA’s GaAs architecture (architecture #2), both with and without
the ”ignore” instruction added to the instruction set. In the later part of the
study (tracing) the MIPS-X architecture was assumed (architecture #3), as
it is described in [19]. It was felt that such an approach would simplify the
analysis without affecting its generality.

The code optimization algorithm used in this study is the above men-
tioned Gross/Hennessey algorithms, except for the difference that, in the
case with the ”ignore” instruction, the ”ignore” instruction is inserted in-
stead of the NOOP(s).

The choice of the code optimization algorithm definitely has an impact
on the results of the analysis. This is simply because a more sophisticated
code optimization algorithm would make the ”NOOP case” less inferior, by
being able to increase the amount of useful code migrated into the branch
delay slots (which decreases the number of NOOPs in the code). For that
reason, this study includes a part which provides the answer to a more
general case in which the percentage of successfully filled branch delay slots
can be arbitrarily modified.

The simulator of architecture #1, architecture #2, and architecture #3
is built using the ISP’ simulation language and the ENDOT simulation tool
[11]. Implementational structure and human interface of this simulator are
of the ”business as usual” style, and will not be described here. For more
information on that subject, the interested reader is referred to [12].

After the results are extracted from the simulator, they are represented
in a way which underlines the relative differences between the ”ignore case”
and the other two approaches. Since execution time is relevant here, the
performance measure was chosen to be the ratio of execution times for the
two cases being compared.

Finally, in order to make the results of this study more widely appli-
cable, and also to address the algorithm choice related problem mentioned
above, the study consists of two parts: benchmarking (explicit analysis and
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implicit analysis) and tracing. In the explicit analysis part of benchmarking,
the values of the selected parameters are artificially varied so that a future
designer can be made aware of the quantitative impacts of various code op-
timization algorithms. In the implicit part of benchmarking, the simulation
is repeated for two relatively short ”standard” benchmarks. More details
about the chosen benchmarks can be found in [12, 13, and 18]. In the last
part, two relatively long traces are used (about 4M instructions each one).

In conclusion, ”explicit” benchmarking (with synthetic benchmarks) is
used to obtain information about the impact of various design parameters,
”implicit” benchmarking (with short semantic benchmarks) is used to obtain
a rough feeling about a broader set of relevant aspects, and the tracing (with
long semantic traces) is used to obtain a precise information about a narrow
set of the most important aspects.

4. Processor Issues of Relevance

As already indicated, the benchmarking analysis to follow is done sep-
arately for the Silicon Stanford University MIPS and the GaAs RCA MIPS
machines. Within each of these two mainstreams, the major issue of impor-
tance is the ratio of total cycles for the cases without the ”ignore” instruction
and with the ”ignore” instruction. The tracing was done for the MIPS-X
and the GaAs RCA MIPS machine, using a similar performance measure.

The instruction sets of the processors are defined in [1], [3] and [19].
The number of registers in each case is chosen to be 16. The depth of the
pipeline is 5 for the Stanford University MIPS (new instruction scheduled
on every other cycle), 3 for the MIPS-X, and 9 for the RCA GaAs MIPS.
The cycle time was normalized, to enable a fair comparison.

The number of branch delay slots is related to the depth and the orga-
nization of the pipeline. However, the exact number of branch delay slots
differs from instruction to instruction. For the silicon MIPS machines, it is
1 or 2 [1 and 19]. For the GaAs RCA MIPS machine, it is 5 [10]. Finally,
in order to make the results easier to compare, the packing capability of the
Stanford University MIPS (packing two operations into one instruction) was
not exploited in this study.

5. Cache Memory Parameters of Interest
for this Study

This work assumes separate instruction and data caches. The analysis
to follow is related to the instruction cache, and is influenced in large part
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by the former work of A.J. Smith (e.g., [4] and [15]). The major issue of
importance is the cache size (S) expressed in words. Values of the parameter
S chosen for the benchmarking part of the study are:

S = {32, 64, 128, 256, 512, 1K, 2K}.

Reasons for choosing this set of values is multifold. First, the stress here
is on GaAs technology, and GaAs caches tend to be small. Second, the lowest
chosen value of 32, is below the nominal expected cache size for realistic
implementations, and can be treated as the lower bound. Analogously, the
value of 2K was chosen as the upper bound, based on the existing GaAs
microprocessor implementations [14]. The second major issue of importance
here is the number of extra cycles lost on the cache miss (M), due to the
long delays of accessing the main memory. Values of parameter M chosen
for this study are:

M = {1, 2, 3, 4, 5, 6}.

Reasons for choosing this set of values are also multifold. Typical value
for Silicon designs is M = 1 (and will be used as a default value for Stanford
University MIPS related studies to follow). Typical value for GaAs designs
is M = 3 (and will be used as a default value for RCA MIPS related studies
to follow). For GaAs, this assumes that the first level cache is on the same
package as the CPU, and the second level cache, which is off the CPU pack-
age, is large enough. However, if the second level cache is not large enough,
or it does not exist, the value of the parameter M can be as large as 6, or
even 9 (this depends on the quality of interconnecting and packaging tech-
nology, and the size of main memory). Therefore, the chosen set of values
for the parameter M covers nicely the entire range of practical values.

The major reason for selecting those two machines for the benchmarking
part of the study is given in the introduction of this paper. Once the choice
of architecture #1 and architecture #2 was made, it became apparent that
the choice is also good for two more reasons. First, this choice gives the
situations which are typical for Silicon and GaAs, the two major technologies
these days. Second, this choice gives the situations which can conditionally
be treated as lower and upper bounds.

Other cache related issues of importance include the level of associativ-
ity, replacement policy, main-memory updating, etc. [15]. These issues are
not analyzed as a part of this study. For each of these issues one represen-
tative solution was chosen, and was kept ”frozen” throughout the study.
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As far as the level of associativity, the direct mapping was chosen. The
reason for this decision is that most of the existing GaAs systems have chosen
direct mapping [14]. As far as other relevant cache design issues, everything
was done as in [10]. The main reason for selecting architecture #2 and
architecture #3 for the tracing part of this study is because of the need to
compare the ”ignore” approach with a ”state-of-the-art” approach.

6. Parameters of the Explicit Analysis

As indicated earlier, this type of analysis is based on predetermined
statistics for relevant parameters of the application software and the system
software.

This type of analysis helps to evaluate the performance of the future
systems, over a wider range of application software characteristics, and for
both current and future possibilities of the code optimizers.

As far as the application software, three issues are crucial here. First,
the percentage of branch instructions. Second, the distribution of loop sizes.
Third, the distribution of forward and backward branches.

Typically, the probability of branches (B) for different applications runs
between 10% and 30% [14]. Consequently, the chosen range of values for the
parameter B is:

B = {10%, 20%, 30%}.

The default value to be used on the figures to follow is B = 20%. The
reason for this choice is that B = 20% represents the arithmetic average.
Typical distribution of loop sizes is difficult to determine. One general way
to treat the distribution of loop sizes is via a weighted sum of individual
loop sizes. The average loop length is given by:

L =
n∑

i=1

ωili, i, n − integers,

where ωi refers to the percentage of loops of the length li (i = 1, 2, . . . , n).
The software tool developed for this study is able to work with various values
of ωi and li (i = 1, 2, . . . , n). However, the results presented here imply a
uniform distribution of loops of the sizes 4 to 2K. In other words, 10% of the
loops are of the length 4 words, 10% of the loops are of the length 8, 10% of
the loops are of the length 16, etc. This seemed to be a fair approximation of
several benchmarks that were crucial for the application of the RCA’s GaAs
microprocessor.
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Typical ratio of forward and backward branches is also difficult to de-
termine. In the absence of a better ratio, it was decided that the results are
represented only for the 1 : 1 ratio of forward and backward branches. In the
first approximation, this refers to the percentage of branches related to loops,
versus the branches not related to loops. The chosen ratio matched fairly
well the typical situation in benchmarks that were crucial for the application
of the RCA’s GaAs microprocessor.

As far as the system software, the major parameter of importance is the
fill-in capability (F ) of the optimizing compiler. It tells how many branch
delay slots have been filled in with useful instructions. The range of values
chosen for this analysis is:

F = {1, 2, 3, 4}.

Such a range was chosen to accommodate the needs of the RCA MIPS
architecture. For the Stanford University MIPS architecture, the values of
F above F = 2 will give the same results. Consequently, the default value
for some of the figures to follow will be F = 2. Finally, it was assumed
that the instruction cache was empty, initially. Once again, the definition of
the ”performance ratio” used on the plots later in this paper is as follows:
Ratio of the number of execution cycles with the ”ignore” instruction in the
branch delay slots, and the number of execution cycles with NOOPs in the
branch delay slots. The maximum value of the performance ratio is equal to
1. The lower the value of the performance ratio, the better (relatively) the
performance of the ”ignore” instruction-based system.

7. Parameters of the Implicit Analysis

As indicated above, this type of analysis is based on the selected bench-
marks. Values of relevant parameters are hidden into the benchmarks. This
type of analysis helps to get a better feeling about the performance for the
actual code, using a specific code optimization algorithm (all results to follow
imply the optimized code).

As far as the application software, here we present the results for two
benchmarks provided to Purdue University by RCA. For more information
on these benchmarks, the interested reader is referred to [13 and 18]. In
some way, these two benchmarks represent two extremes, when it comes to
the percentage of branches.
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Fig. 1. Total cycles ratio vs. cache size, varying extra cycles lost
on a cache miss: (a) Stanford MIPS, (b) RCA GaAs.

Fig. 2. Total cycles ratio vs. cache size varying percentage of
branch instructions: (a) Stanford MIPS, (b) RCA GaAs.

As indicated in [12], the first benchmark, intmm, is an integer matrix
multiplication program. This benchmark initializes two 40*40 integer ma-
trices and multiplies them. The second benchmark, search, is an adaptation
of a Motorola MC68020 string search benchmark [18]. While the MC68020
benchmark was set up to search a block of test data for the first occurrence
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of a given byte string, the adaptation used searched the test data block for a
given word string. The test data used was a block of 120 words and the pat-
tern searched for was 15 words long. A partial match, the first four words,
was imbedded in the test block starting with the 61st word, while the com-
plete match began with the 91st test block word [12]. As already indicated,
the two benchmarks were chosen to represent opposite ends of the regime in
terms of percentage of branch instructions. Neither program utilized loops
in multiplication or division algorithms; the difference in branch percentages
was due to the different methods of implementing multiplication and division
in the two processors. Approximately 37% of the useful (i.e., neither NOOP
nor ”ignore”) instructions executed for the search program were branches
[12].

8. Performance Diagrams of Interest
for this Study

Careful selection of simulation outputs is of large importance for good
understanding of simulation results. Figures 1 to 4 to follow have the fol-
lowing characteristics:

1. X axis will refer to the size of the cache (S).

2. Y axis will refer to the ratio of the number of cycles
without and with the ”ignore” instruction (R).

The choice of S reflects the fact that the major impact of the ”ignore”
instruction is through the changed effective value of the cache size. The
choice of R reflects the fact that the major goal of this study is to determine
the actual speed-up due to the utilization of the ”ignore” instruction.

Figures 1 to 4 were obtained using benchmarks. The major rationale
behind this benchmarking (with relatively short benchmarks) was to get a
rough feeling about the efficiency of the ”ignore” instruction.

Figures 5 and 6 were obtained using traces. The major rationale behind
this tracing (with relatively long traces) was to get a precise comparison
between the ”ignore” instruction and the delayed branch with squashing used
in the MIPS-X processor [19], which is a superior solution to the problem
in typical silicon environments. The performance measure RR was selected
so that the two approaches can be compared easily, and consequently is
different from the performance measure R used in benchmarking.

It is believed that the chosen figures shed the complete light on the
problem. As indicated below, other functional dependencies of interest can
be easily created with the software tool that was built for this study. For
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more details on the tool, its structure, as well as data testing and verification
procedures, the interested reader is referred to [12].

Fig. 3. Total cycles ratio vs. cache size, varying branch
delay slot fill-in: (a) Stanford MIPS, (b) RCA GaAs.

Fig. 4. Total cycles ratio vs. cache size for benchmark
programs: (a) Stanford MIPS, (b) RCA GaAs.

9. Discussion of Results for the Explicit Analysis

Figure 1 compares Stanford MIPS (Figure 1a) and RCA GaAs machine
(Figure 1b) for various values of parameter M. Obviously, as indicated in
Figure 1a, parameter M has no impact in the case of the Stanford MIPS
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(shallow) pipeline structure, since the default value of parameter F was cho-
sen to be F = 2, to reflect the situation typical of state-of-the-art code
optimizers. On the other hand, in the case of the RCA GaAs machine
(deep) pipeline structure, for the same type of code optimization technology
(F = 2), the usage of the ”ignore” instruction can provide an improvement
of up to about 10%. I believe that this level of improvement fully justifies
the incorporation of the ”ignore” instruction into the RCA GaAs machine
[10]. As you remember, the primary motivation for this study was to provide
a justification for including (or not including) the ”ignore” instruction.

Figure 2 compares Stanford MIPS (Figure 2a) and RCA GaAs machine
(Figure 2b) for various values of parameter B. Again, due to the fact that the
value of F was chosen to be F = 2, the impact of parameter B is not visible
(the plot was included for consistency reasons, and also to show clearly the
differences between a ”shallow” pipeline and a ”deep” pipeline). However,
in the case of the RCA GaAs pipeline, for the chosen values of F and M

(F = 2 and M = 3), the performance gain was about 2% to 3%, for every
10% increase in the percentage of branches (B).

Figure 3 compares Stanford MIPS (Figure 3a) and RCA GaAs machine
(Figure 3b) for various values of parameter F . In the case of F = 0, the
”ignore” instruction can provide some improvement even in the case of the
Stanford MIPS pipeline (F = 0 means no code optimization). However, that
improvement is only about 1% (negligible). On the other hand, the F = 0
case provides an improvement of about 12% for the RCA GaAs machine
(upper bound). Note that the maximum percentage of branch instructions
is defined by:

Bmax =
100

F + 1
.

As indicated in [12], in the context of this analysis, each of the branch
instructions was treated independently. In other words, the branches were
inserted randomly to yield the specified branch instruction percentage and
each was assigned a random branch size and direction as per the assumptions
stated previously. Thus, each branch was assumed to be a taken branch and
there was no provision for simulating repeated loops. This may have the
effect of producing more ”scattered” code than might normally be encoun-
tered. As a result, the simulation output may produce more cache misses
for a given cache size than might be experienced using actual compiled code.
The effect this would have on the results presented is not apparent, as the
total cycles ratio is dependent on the difference in cache misses between us-
ing NOOPs and using the ”ignore” instruction, not the actual number of
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cache misses. Load delay slot fill-in was not addressed in the simulation. It
was assumed that all load delay slots were filled in with useful instructions.
This is unrealistic for the RCA GaAs architecture, which has eight load de-
lay slots to fill. As a result, the simulation output would tend to produce
less cache misses than would actual compiled code, but again, it is difficult
to predict what effect this would have on the total cycles ratio. An ”ignore”
instruction approach to load delay slots could decrease execution time for
architectures with deep pipelines where it is likely that the compiler would
not be able to fill two or more load slots [12].

10. Discussion of Results for the Implicit Analysis

Figure 4 gives results of the implicit analysis for Stanford MIPS (Figure
4a) and RCA GaAs machine (Figure 4b). For the Gross/Hennessy code
optimization algorithm (parameter F is irrelevant now), which fills in all
(or all minus one) branch delay slots, in both pipelines, for the benchmark
intmm, the ”ignore” instruction provides no improvement. However, it does
provide a minimal improvement (only about 1%) for the other extreme,
the benchmark search. This result was not very encouraging as far as the
inclusion of the ”ignore” instruction into the instruction set of the RCA
GaAs machine. In other words, the value of the ”ignore” instruction is highly
dependent on the end application and the choice of the code optimization
algorithm.

As also indicated in [12], the advantage of using the ”ignore” instruction
is rather unclear in Figure 4, since the size of the benchmark program is small
compared to the cache sizes used. The NOOP version of the RCA search
program occupied only 68 words and the ”ignore” version occupied only 47
words. As a result, no change in the total cycles ratio would be expected
for any cache size greater than 68 words. The only difference expected in
that case would be the extra cycles for a larger number of cache misses
encountered when initially loading the larger NOOP version of the program
into the instruction cache [12].

11. Discussion of Results for the Tracing

Figure 5 is related to a trace which is intensive in numerical computing,
and Figure 6 is related to a trace which is intensive in symbolic computing.
The first trace includes extensive matrix multiplication and fft operations.
The second trace includes code which is related to artificial neural networks
(ann). Percentage of branches in the two traces is different, and that explains
some numerical differences between Figures 5 and 6.
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RR- N umber of cycles for the trace with ”ignore” instruc-
tion divided by the number of cycles for the trace with
delayed branch with squashing;

S- C ache size;

F- T he value of the fill-in parameter.

Fig. 5. Results of tracing with a 4M instruction trace oriented to numerical
computing (intensive in matrix multiplication and fft):
”Ignore” instruction versus delayed branch with squashing.

RR- Number of cycles for the trace with ”ignore” instruc-
tion divided by the number of cycles for the trace with
delayed branch with squashing;

S- Cache size;

F- The value of the fill-in parameter.

Fig. 6. Results of tracing with a 4M instruction trace oriented to symbolic
computing (intensive in Hopfield and other ann code):
”Ignore” instruction versus delayed branch with squashing.

Performance measure RR on Figures 5 and 6 represents the ratio of the
number of cycles needed to execute a trace with the ”ignore” instruction,
and the delayed branch with squashing. If RR ¡ 1 then ”ignore” instruction
provides better performance than the delayed branch with squashing.
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For different cache sizes, the ”ignore” instruction performs better for
the value of F parameter equal to 4 or 5. This means that the approach
based on the ”ignore” instruction is better for deeper GaAs pipelines, and
not too attractive for typical silicon pipelines. Also, Figures 5 and 6 show
that the approach based on the ”ignore” instruction compares better for
smaller instruction caches, which is another characteristic of GaAs systems.

12. Conclusion

Usage of the ”ignore” instruction (with an associated hardware mech-
anism for ignoring the given number of cycles) can speed up program ex-
ecution as compared to using NOOPs (in unfilled branch delay slots), in
situations where more than one branch delay slot per branch is left unfilled
by the code optimizer. For architectures such as the Stanford University
MIPS (with only one or two branch delay slots to fill), only marginal im-
provement is realized by incorporating the ”ignore” instruction. For archi-
tectures with deeper pipelines and more branch delay slots (such as the RCA
GaAs architecture), the use of the ”ignore” instruction can lead to a decrease
in execution time, even when compared to delayed branch with squashing,
which justifies the usage of the ”ignore” instruction in [10]. This paper pro-
vides a numerical answer to the question of how significant is the decrease
in execution time, and it complements the earlier paper [10].
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