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DISTANCE SPECTRUM OF CHANNEL TRELLIS
CODES ON PRECODED PARTIAL-RESPONSE

1-D CHANNEL

Miroslav Despotović and Vojin Šenk

Abstract. Distance spectrum is the main factor in determining the event er-
ror probability when maximum-likelihood decoding is used for convolutional
codes [13]. In this paper we compute the distance spectrum for the best
R=1/N channel codes obtained using convolutional (linear trellis) codes to-
gether with known offset sequence addition on precoded partial-response 1−D

channel proposed in [4]. To this end we have modified the BIFAST algorithm
[11] in order to enable the distance spectrum evaluation in the supper-trellis
[1], a technique necessary for this type of channel codes.

1. Introduction

Recent works on achieving high data rates on intersymbol (ISI) channels
analyse the use of a technique referred to as PRML (PR - partial-response
signalling with ML - maximum likelihood decoding). For combatting ISI
this approach, instead of keeping the transitions far apart using (d, k) codes
[9], allows the transitions to be close together, and the received signal with
its resulting ISI is equalized to a predetermined impulse response, like the
one known to be present in the class-4 partial-response channel [5]. Since
this channel is equivalent to a memoryless one preceded by a trellis code, the
equalized signal may then be detected by an ML sequence estimator, e.g.,
Viterbi detector [3]. The pre-Viterbi detector equalization does not greatly
increase the probability of erroneous symbol detection, while the complexity
of the Viterbi detector is significantly reduced.

Magnetic recording may also be viewed as an ISI-corrupted transmis-
sion [10]. For magnetic recording, little equalization is required to force
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the equalized channel to match the class-4 partial-response channel (PR4),
whose impulse response is h(D) = 1 − D2 (D - unit delay operator). This
channel can be considered as two time-interleaved ”dicode” partial response
channels, each with polynomial h(D) = 1−D, [10]. A simplified method for
ML sequence detection for the PR4 channel would thus consist of deinter-
leaving the samples of the readback waveform and to apply Viterbi detectors
matched to the (1 − D) channel, one for each deinterleaved data stream.

The PR4 channel, viewed as a trellis code, does not have sufficient
error-protecting capabilities for transmission (recording) purposes. In order
to amend this situation, the input to this channel may itself be trellis-coded.
The cascade of the two trellis codes is equivalent to a unique trellis code.
Hole and Ytrehus [4] gave a nice review of papers on coding techniques for
improving the reliability of digital transmission (recording) over a noisy PR
channel. They also gave a number of new binary convolutional (linear trellis)
codes that, together with known offset sequence addition and precoding, give
powerful overall trellis codes when used on the 1− D channel. It is the aim
of this paper to determine the performance of these codes upon optimal
(Viterbi) decoding.

The performance of a trellis code depends on the decoding algorithm
employed and on the properties of the code. The distance spectrum is the
property of the code that constitutes the main factor of the event error
probability of a maximum-likelihood (optimum) decoder, if the distance is
appropriately chosen for the coding channel used [13], [12]. For instance,
Hamming distance and squared Euclidean distance (s.E.d.) are the appro-
priate distance measures for the binary symmetric channel (BSC) and the
additive white Gaussian noise (AWGN) channel, respectively.

The minimum distance of a channel code (also called the free distance
in the case of trellis codes) was used for a long time as the only parameter
for judging the suitability of the code for information transmission over a
noisy channel. The use of distance spectrum of a trellis code for bounding its
performance [13], although known since 1971, has found widespread appli-
cation only recently, after a number of efficient algorithms for its evaluation
have been found [2], [8], [11]. The sole use of the free distance yields rela-
tively good (lower) bounds on the error probability only at code rates that
are much smaller than the channel capacity (usually designated as the high
signal-to-noise ratio (SNR) region), but largely underestimate it otherwise.
On the contrary, the (upper) bounds obtained using the distance spectrum
are useful at a much wider range of code rates.
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In Section 2 some introductory concepts and definitions are given. An
illustrative example is given in Section 3. In Section 4 we give a brief de-
scription of super-trellis construction that is used for determining distance
spectrum of non-regular codes [8]. Finally, Section 5 contains results for rate
R = 1/N channel encoders.

2. Convolutionally Coded PR Channel

We will now review some of definitions of the basic terms referring to
the binary convolutionally coded partial-response channel.

Let F represent the finite field GF (2). The configuration of a coded
1 − D PR channel is depicted in Figure 1. At time t the (N, K,Mc) bi-
nary convolutional encoder of memory Mc takes a K-tuple of bits it =
[i1t , . . . , iKt ] ∈ FK together with Mc previous K-tuples it−1, . . . , it−Mc

, and
generates an N -tuple of coded bits xt = [x1

t , . . . , xN
t ] ∈ FN . The binary

input sequence to the encoder is represented by I = [i0, i1, . . . ], while the
corresponding output sequence is similarly represented by X = [x0, x1, . . . ].
The binary convolutional encoder is defined by a 1 by N generator ma-
trix G(D) = [G1(D), . . . , GN (D)], deg(Gn(D)) = Mc, [4]. For example,
consider the (5, 1, 1) convolutional code defined by the generator matrix
G(D) = [1, 0, 0, 0, D]. This code will be used in the Section 3 as the un-
derlying convolutional code for constructing a good overall trellis code (see
Figure 2). Alternatively, this matrix may be given in the usual octal nota-
tion [6, pp. 329–337] as G = [2, 0, 0, 0, 1], since 28 = 102 = 1 + 0 · D and
18 = 012 = 0 + 1 · D. This compact notation will be used in Table 1.

Let C be any (N, K,Mc) convolutional code and let A = [a0, a1, . . . ],
ai ∈ FN , be an arbitrary sequence that is not in C. The set

C ⊕ A = {X ⊕ A|X ∈ C}, A 6= 0 (1)

is a coset of C (⊕ denotes componentwise addition (in F ) of binary se-
quences). The offset sequence A is a coset representative (not unique). In
this paper we shall be interested in coset representatives of the form A = p
where p = [p1, . . . pN ] is an N -tuple in FN , and p denotes the period sequence
of period N obtained by repeating the N -tuple p. A trellis represanting the
sequence C ⊕ A is called the coset trellis.

In Figure 1 a coset representative p is added to the coded sequence
X (to ensure short maximum zero-run at the channel output). The coset
sequence Xc = X ⊕ p is passed through the precoder with transfer function
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1/(1 ⊕ D), resulting in the binary sequence Xp. This sequence is passed
through a 1 − D partial-response channel producing the ternary sequence
XPR with coefficients in {0,±1}. Zero mean i.i.d. Gaussian noise n is added
to XPR resulting in the real number sequence Y . The Viterbi decoder uses
Y to determine a maximum likelihood estimate Î of the input sequence I.

Fig. 1. Convolutionally coded PR chanel

The set of noiseless output sequences XPR from 1−D channel in Figure
1 forms an overall ternary non-linear trellis code called the channel code.
The trellis for the channel code is called the decoder trellis.

The free s.E.d. at the channel output ( the minimum s.E.d. between
any two paths through the decoder trellis) is lower bounded by the free Ham-
ming distance of the (N, K,Mc) convolutional code [14]. The lower bound
suggests the use of a convolutional code with maximal free Hamming dis-
tance for given rate R and number of decoder states S. Hole and Ytrehus [4]
determined cosets of convolutional codes that, together with 1/(1⊕D) pre-
coder, generate (N, K,Mc) trellis codes with free s.E.d. significantly larger
then the free Hamming distance of the best (N, K,Mc) convolutional code
with the same number of states in the Viterbi decoder (hereafter denoted as
HY-codes). These cosets exploit the channel memory in such a way that the
free s.E.d. is enhanced, i.e. the convolutional codes used are not optimized
for Hamming distance. Also, it is important to note that codes tabulated
in Section 5 are said to be trellis matched to the 1 − D channel [4], if
the channel code memory is unexpanded, i.e. if M = Mc. The number of
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decoder states is unaffected by the channel memory in this case.

The distance spectrum of a trellis code is a sequence of ordered pairs
(di, Mi), i = 1, 2, . . . , where di < di+1 is the i-th distance among all the
paths that diverge from the same state (of the code memory) in the trellis
in one moment, and remerge M + 1 or more branches later (d1 = dfree).
One of these paths is called the reference path, the other the concurrent
path.

A union bound on the first event error probability Pe of channel codes
may be obtained by summing the error probability over all possible incorrect
paths which remerge with all possible correct paths. At any time unit, Pe is
bounded by [8], i.e.

Pe ≤
∞
∑

i=1

MiQ
(

√

di

2N0

)

, (2)

where di represents the i-th s.E.d. between signal sequences, Mi is the (av-
erage) multiplicity of the i-th spectral line, i.e. of codewords at distance di

from a specific codeword, N0 is the one-sided noise power spectral density,
and Q(·) is the Gaussian integral function

Q(x) =
1√
2π

∞
∫

x

e−
t
2

2 dt. (3)

As stated above, this upper bound is useful at moderate to high signal-
to-noise ratios.

3. An Illustrative Example

As an example, let us consider the (N, K,Mc) = (5, 1, 1) convolu-
tional code defined by the generator matrix G(D) = [1, 0, 0, 0, D] whose
dHfree = 2. A coset of the convolutional code is obtained by adding the
coset representative p, where p = [0, 1, 1, 1, 1], to all codewords in the code.
The convolutional encoder, together with coset, precoded and decoder trel-
lises is shown in Figure 2. It can be seen that the generated (5, 1, 1) channel
code has free s.E.d. equal to d1 = 26 with multiplicity M1 = 0.25. If the
convolutional code were optimized for maximum free Hamming distance,
(G(D) = [1, 1 + D, 1 + D, 1 + D, 1 + D, ]), dHfree = 9, the free s.E.d. for the
equivalent channel code would be only d1 = 9 with any coset representative.
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Fig. 2. Convolutional code with R = 1/5 G = [2, 0, 0, 0, 1] on the (1 − D)
PR channel, S-encoder state, P precoder state and C-channel state

4. Super-trellis

Sometimes, computing the distance spectrum is not possible in the con-
venient manner searching the path closest to any reference path (usually the
all-zero one), because the trellis code is neither regular nor quazi-regular [8].
In these cases, the search has to be made for all paths as the reference ones
instead. For small encoder memories, the most efficient method is to create
a super-trellis [1, pp. 461–467]. An example of a super-trellis construction
for the simple two-state code trellis is given in Figure 3. The super-trellis
has S2 states, while the original trellis has S states.

Every super-state consists of a pair of states in which the first element
is the state of the trellis that spans the set of reference paths (the refer-
ence trellis), and the second element is the state of the trellis containing
concurrent paths (the concurrent trellis). The procedure is not to find the
diverge/merge path with minimum accumulated distance from the unique
reference path, but to find a path with minimum accumulated distance that
diverges from a reference super-state (Si, Si) into some non-reference super-
state and later remerge to a reference one (it need not be the same one as
the breakout reference super-state). Super-trellis branches are labeled with
the s.E.d. between signals assigned to the corresponding branches of the
reference and concurrent trellis.
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Fig. 3. (a) An example of the two-state trellis and
(b) its corresponding super-trellis

For example, transition from the super-state (S0, S1) to the super-state
(S1, S1) is labeled with the distance between signals on the branch S0 → S1

(in the reference path trellis), i.e., signal 11, and branch signal S1 → S1 (in
the concurrent trellis), i.e., signal 01. This distance is (1 − 0)2 + (1 − 1)2 =
1. The super-trellis search is done with the aid of the modified BIFAST
algorithm [11]. The original algorithm was designed for regular or quazi-
regular trellises, where there exists only one reference path. If a regular
code would be analysed via the super-trellis technique, each spectral line
would be enumerated S2Kl times, where l is the length of the error event,
otherwise not accounted for in evaluating the code distance spectrum. The
average (over all reference paths) distance spectrum is obtained normalizing
the results obtained with this number, and then summing over all l.

5. Results

Distance spectra results for 1/N HY-codes are given in Table 1. These
results are illustrated in the next five figures giving some interesting com-
parisons.
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Table 1. Distance spectrum of channel codes trellis

matched tothe 1 − D channel

No.1 Mc = 1, R = 1/5 No.2 Mc = 2, R = 1/5 No.3 Mc = 3, R = 1/5

p = 17 G = [2, 0, 0, 0, 1] p = 27 G = [0, 4, 0, 1, 0] p = 27 G = [0, 15, 0, 0, 7]

di Mi di Mi di Mi

26 2.500000000e − 01 28 2.500000000e − 01 38 5.000000000e − 01

28 2.500000000e − 01 30 6.250000000e − 02 42 1.500000000e + 00

30 7.500000000e − 01 32 5.000000000e − 01 46 1.125000000e + 00

32 7.500000000e − 01 34 5.000000000e − 01 48 2.500000000e − 01

34 1.000000000e + 00 36 2.500000000e − 01 50 6.250000000e − 01

36 1.000000000e + 00 38 8.750000000e − 01 52 1.000000000e + 00

38 1.000000000e + 00 40 2.500000000e − 01 54 8.750000000e − 01

40 1.000000000e + 00 42 5.000000000e − 01 56 8.750000000e − 01

42 1.000000000e + 00 44 5.000000000e − 01 58 1.125000000e + 00

44 1.000000000e + 00 46 3.125000000e − 01 60 7.500000000e − 01

46 1.000000000e + 00 48 5.000000000e − 01 62 3.500000000e + 00

48 1.000000000e + 00 50 6.250000000e − 01 64 1.562500000e + 00

50 1.000000000e + 00 52 7.500000000e − 01 66 5.125000000e + 00

52 1.000000000e + 00 54 1.250000000e + 00 68 2.500000000e + 00

54 1.000000000e + 00 56 9.375000000e − 01 70 4.632812500e + 00

56 1.000000000e + 00 58 2.000000000e + 00 72 5.765625000e + 00

58 1.000000000e + 00 60 1.750000000e + 00 74 6.335937500e + 00

60 1.000000000e + 00 62 1.625000000e + 00 76 8.687500000e + 00

62 1.000000000e + 00 64 2.875000000e + 00 78 8.636718750e + 00

64 1.000000000e + 00 66 1.875000000e + 00 80 8.710937500e + 00

66 1.000000000e + 00 68 2.375000000e + 00 82 1.435156250e + 01

68 1.000000000e + 00 70 3.187500000e + 00 84 1.264843750e + 01

70 1.000000000e + 00 72 2.703125000e + 00 86 2.439843750e + 01

72 1.000000000e + 00 74 3.625000000e + 00 88 1.933984375e + 01

74 1.000000000e + 00 76 4.343750000e + 00 90 2.968750000e + 01

76 1.000000000e + 00 78 5.015625000e + 00 92 3.099609375e + 01

78 1.000000000e + 00 80 6.109375000e + 00 94 3.914062500e + 01

82 6.343750000e + 00 96 5.212011719e + 01

84 8.953125000e + 00 98 5.715039062e + 01

100 6.838476562e + 01

102 8.222851562e + 01

104 9.068701172e + 01

106 1.294423828e + 02

108 1.348256836e + 02

110 1.827050781e + 02

112 1.962065430e + 02

114 2.451684570e + 02
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Table 1. continued

No.4 Mc = 4, R = 1/5 No.5 Mc = 1, R = 1/4 No.6 Mc = 2, R = 1/4

p = 17 G = [26, 0, 0, 7, 0] p = 6 G = [2, 0, 0, 1] p = 12 G = [0, 4, 0, 1]

di Mi di Mi di Mi

46 1.875000000e − 01 18 2.500000000e − 01 20 2.500000000e − 01

50 8.750000000e − 01 20 2.500000000e − 01 22 6.250000000e − 02

54 1.250000000e + 00 22 7.500000000e − 01 24 5.000000000e − 01

56 6.250000000e − 02 24 7.500000000e − 01 26 5.000000000e − 01

58 6.250000000e − 01 26 1.000000000e + 00 28 2.500000000e − 01

60 6.250000000e − 01 28 1.000000000e + 00 30 8.750000000e − 01

62 9.375000000e − 02 30 1.000000000e + 00 32 5.000000000e − 01

64 1.750000000e + 00 32 1.000000000e + 00 34 6.250000000e − 01

66 7.500000000e − 01 34 1.000000000e + 00 36 1.031250000e + 00

68 1.875000000e + 00 36 1.000000000e + 00 38 1.312500000e + 00

70 4.156250000e + 00 38 1.000000000e + 00 40 7.500000000e − 01

72 7.421875000e − 01 40 1.000000000e + 00 42 2.250000000e + 00

74 8.875000000e + 00 42 1.000000000e + 00 44 1.968750000e + 00

76 1.117187500e + 00 44 1.000000000e + 00 46 1.562500000e + 00

78 8.468750000e + 00 46 1.000000000e + 00 48 3.578125000e + 00

80 6.929687500e + 00 48 1.000000000e + 00 50 3.390625000e + 00

82 3.507812500e + 00 50 1.000000000e + 00 52 2.812500000e + 00

84 1.755468750e + 01 52 1.000000000e + 00 54 6.015625000e + 00

86 3.242187500e + 00 54 1.000000000e + 00 56 6.171875000e + 00

88 1.998046875e + 01 58 4.656250000e + 00

90 1.819531250e + 01 60 1.056250000e + 01

92 1.019140625e + 01

94 4.846142578e + 01

96 8.703125000e + 00

98 6.324267578e + 01

100 4.576562500e + 01

102 4.237841797e + 01

104 1.337663574e + 02

106 3.055810547e + 01

108 1.997133789e + 02

110 1.163720703e + 02

112 1.601523438e + 02

114 3.504694824e + 02

116 1.064584961e + 02

118 5.734952393e + 02

120 2.911203613e + 02

All distance spectra contain spectral lines bounded with 3dfree, except
code No.4. For the sake of easier comparison of the codes we introduce the
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Table 1. continued

No.7 Mc = 3, R = 1/4 No.8 Mc = 4, R = 1/4 No.9 Mc = 1, R = 1/3

p = 12 G = [0, 15, 0, 7] p = 12 G = [0, 2, 0, 25] p = 3 G = [2, 0, 1]

di Mi di Mi di Mi

26 5.000000000e − 01 32 2.812500000e − 01 10 2.500000000e − 01

30 1.125000000e + 00 36 9.218750000e − 01 12 2.500000000e − 01

32 2.500000000e − 01 40 1.468750000e + 00 14 7.500000000e − 01

34 1.375000000e + 00 42 2.656250000e − 01 16 7.500000000e − 01

36 5.000000000e − 01 44 1.796875000e + 00 18 1.000000000e + 00

38 1.375000000e + 00 46 1.093750000e + 00 20 1.000000000e + 00

40 8.750000000e − 01 48 2.250000000e + 00 22 1.000000000e + 00

42 1.625000000e + 00 50 2.421875000e + 00 24 1.000000000e + 00

44 1.312500000e + 00 52 3.359375000e + 00 26 1.000000000e + 00

46 2.882812500e + 00 54 4.359375000e + 00 28 1.000000000e + 00

48 2.328125000e + 00 56 5.726562500e + 00 30 1.000000000e + 00

50 4.902343750e + 00 58 7.250000000e + 00

52 4.726562500e + 00 60 1.009375000e + 01

54 7.726562500e + 00 62 1.212695312e + 01

56 7.882812500e + 00 64 1.726562500e + 01

58 1.187500000e + 01 66 2.121582031e + 01

60 1.179296875e + 01 68 2.890234375e + 01

62 1.759375000e + 01 70 3.719348145e + 01

64 1.842871094e + 01 72 4.891894531e + 01

66 2.651367188e + 01 74 6.437854004e + 01

68 3.001025391e + 01 76 8.369458008e + 01

70 4.262792969e + 01 78 1.104318848e + 02

72 4.951416016e + 01 80 1.441513062e + 02

74 6.854296875e + 01 82 1.882341614e + 02

76 8.122802734e + 01 84 2.480677490e + 02

78 1.077687988e + 02 86 3.226047974e + 02

88 4.237944336e + 02

90 5.536002197e + 02

92 7.250024414e + 02

94 9.445279541e + 02

96 1.243921143e + 03

cumulative distance distribution exponent (CDDE) as

Ecum(dl) =
1

NcR
ld

(

∑

i≤l

Mi

)

, (4)

where Nc = (M + 1)N is the constraint length of the code [7].

This definition enables us to compare codes of different memory lengths
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Table 1. continued

No.10 Mc = 2, R = 1/3 No.11 Mc = 3, R = 1/3 No.12 Mc = 4, R = 1/3

p = 5 G = [0, 2, 7] p = 3 G = [15, 0, 7] p = 3 G = [25, 0, 37]

di Mi di Mi di Mi

12 7.500000000e − 01 18 1.000000000e + 00 20 5.000000000e − 01

14 2.500000000e − 01 22 1.875000000e + 00 22 2.500000000e − 01

16 1.250000000e + 00 24 1.125000000e + 00 24 2.000000000e + 00

18 7.500000000e − 01 26 3.375000000e + 00 26 8.750000000e − 01

20 1.000000000e + 00 28 2.500000000e + 00 28 4.562500000e + 00

22 1.281250000e + 00 30 7.570312500e + 00 30 3.257812500e + 00

24 1.187500000e + 00 32 7.359375000e + 00 32 6.125000000e + 00

26 2.250000000e + 00 34 1.519921875e + 01 34 1.064843750e + 01

28 2.062500000e + 00 36 1.857421875e + 01 36 1.653710938e + 01

30 3.687500000e + 00 38 3.504687500e + 01 38 2.096093750e + 01

32 3.917968750e + 00 40 4.434277344e + 01 40 4.533007812e + 01

34 5.355468750e + 00 42 7.768359375e + 01 42 5.813476562e + 01

36 6.710937500e + 00 44 1.078598633e + 02 44 1.037343750e + 02

46 1.776022949e + 02 46 1.601098633e + 02

48 2.526063232e + 02 48 2.442608643e + 02

50 4.080000610e + 02 50 3.908679199e + 02

52 5.969239502e + 02 52 6.250312500e + 02

54 9.380477295e + 02 54 9.368974609e + 02

56 1.544540283e + 03

58 2.369559082e + 03

60 3.715906250e + 03

and code rates on the same diagram. According to [12], CDDE does not
depend on these two code parameters, but on code excellence only. It may
be shown [12] that CDDE is essentially a logarithmic measure of the gain
in error probability obtainable by an increase of Viterbi decoder complexity.
For larger memories and distances (M > ML ≈ 2 and d > dL ≈ 1.5dfree),
CDDE is approximated by [12],

Ecum(dl) ∼= a
dl

Nc

+ b, a ∈ R
+, b ∈ R. (5)

This property is easily verified in Figs. (4-8). The better code is char-
acterized by lower a and b, corresponding to the right-most plot in these
figures. Since the slope, a, is approximately the same for all good codes,
the vertical shift b could be taken as the sole measure of how much a code
is matched to the 1 − D channel. For good codes shift b should always be
negative.
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CDDE for several HY R = 1/4 codes is given in Figure 4. Increas-
ing memory length, one obtains a more linear curve. The slope gradually
increases with Mc, with simultaneous slight increase of b.

In Figure 5 we compare the CDDE for HY code No.11 and the channel
code obtained using the maximal free Hamming distance convolutional code
with same parameters and G = [54, 64, 74], dHfree = 10 and p = [1, 0, 1].
Both codes are trellis matched. The CDDE′s for these two codes are both
very linear with identical slopes. The CDDE of the max. dHfree code is
shifted upwards by approximately 0.6 so that the HY code is better not only
when free s.E.d.’s are compared, but also throughout the whole distance
spectrum.

In Figure 6 we compare the CDDE’s for different code rates and same
memory lengths (Mc = 2). Once again, the difference between CDDE’s
compared is only in the vertical shift, the best code being the one with the
smallest rate.

The influence of the coset representative on the CDDE of the trellis
matched codes obtained using the convolutional code with G = [5, 7, 7],
Mc = 2, dHfree = 8 (this is the maximum dHfree code) and the code) and
the convolutional code with G = [0, 2, 7], Mc = 2, dHfree = 5 are analysed
in Figure 7. The best coset representative for both codes is p = [1, 0, 1], and
the worst one with p = [0, 0, 0]. Note that the second code with p = [1, 0, 1]
is actually the HY code used in Table 1 as the code No. 10. The influence
of the coset representative is smaller for the maximum dHfree code, due to
the fact the free s.E.d. is bounded by dHfree, as mentioned above. It may
also be observed that the free s.E.d. of this code is not influenced by p, and
that the only difference between channel codes obtained from it lies in the
vertical shift b. The second convolutional code is much more sensitive to p.
With the worst p its CDDE is by far the least favorable one, including the
worst free s.E.d. of all four channel codes, while the best p gives the best
CDDE curve in the whole set.

Finally, CDDE’s for several HY codes with different code rates and
memory lengths are compared in Figure 8.
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Fig. 4. Cumulative distance distribution exponent for HY
codes with R = 1/4 and different memory lengths

Fig. 5. Cumulative distance distribution exponent for HY code No. 11 and
maximal free Hamming distance code with R = 1/3, M = 3 and
p = [1, 0, 1]
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Fig.e 6. Cumulative distance distribution exponent for
HY codes with M = 2 and different code rates

Fig. 7. Cumulative distance distribution exponent for HY codes and
maximal dHfree codes and their cosets with M = 2 and
R = 1/3
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Fig. 8. Cumulative distance distribution exponent for HY codes
with different code rates and memory lengths
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