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DESIGN OF THE OBSERVER-BASED SPEED CONTROLLER

APPLIED IN SERVO DRIVESWITH LIMITED RESOLUTION

OF POSITION SENSORS

Milić Stojić and Slobodan Vukosavić

Abstract. This paper deals with the design of observer-based controller for
high-performance speed-controlled servo drives that employ incremental en-
coders for sensing of the motor shaft position. The suggested extended ob-
server is designed by introducing the additional integration state variable
within the ordinary identity observer in order to enable, even in the pres-
ence of a constant or slow varying load torque disturbance, the estimation of
shaft speed and filtering of position signal contaminated by the quantization
noise due to a limited resolution of position transducer. The useful proce-
dures for setting of controller parameters and adjustment of observer gains
are proposed.

1. Introduction

High performance servomechanisms employ position sensors on the mo-
tor shaft [1,2]. In practice, two types of sensors are most frequently applied:
optical encoders (absolute or incremental), and electromagnetic resolver. In
the case of an absolute optical encoder, the shaft position is read as a digital
word obtained directly from the sensor. On the other hand, the incremental
encoder must be equipped with an up-down counter driven by the encoder
pulses ”A” and ”B”. This counter can be set to the position ”0” each time
when the marker ”C” of the incremental encoder appears. Finally, the shaft
position is read as an digital word, as well. The electromagnetic resolver gen-
erates sinusoidal voltages at the detection windings; amplitudes and phases
of these voltages are related with the shaft position. At the output register
or the resolver–to–digital (R/D) converter, which comprises the closed–loop
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PLL-based position tracking, the shaft position is also read in the form of
a digital word. Hence, the resolution of the shaft position measurement is
limited in all cases. The limit depends upon the specific application and
sensor technology.

In robotics applications, a number of motors is attached to moving
parts. Requirements for the fast operation and as short as possible cycle
times impose the claim for light robot arms. Moreover, the restricted room
and limited weight of the motor call for the operation at raised temperatures.
Therefore, the usage of optical shaft sensors is not advisable and thus, in
servos for robot hands, robust electromagnetic resolvers are commonly used
for sensing the shaft position. Up to date resolvers and R/D converters
enable the detection of shaft position with (12-14)-bit resolution for high–
speed motors, and 16-bit resolution in the case of low-speed (direct drive)
motors. The resolver generates the position feedback signal, which is also
used as an input signal for the torque control of AC motors: in indirect field
orientation schemes for induction motors, and current vector orientation for
brushless DC motors. The signal from position transducer is often used
to estimate the velocity signal necessary for the design of high-performance
servos [1,2].

As it has been shown [1,2], for the torque control of AC motors [3]
(field/current vector spatial orientation), the 8-bit resolution of the shaft
position signal is quite sufficient. On the other hand, the resolution of po-
sition signal used for the speed- and position-feedback purposes is crucial
for the overall performance of a servomechanism. Due to the finite resolu-
tion, the actual shaft position differs from the digital word representing the
position (the lower resolution, the larger difference). Therefore, both the po-
sition error and the speed estimate are contamined by a quantization noise.
In the compensation of error signal, controller gains amplify pulsations and
thus generate a fluctuating torque command. As the result, the shaft po-
sition will not be smooth as necessary, speed and position of the shaft will
oscillate, and motor losses will increase due to the pulsating current. Some-
times, in practice, controller gains are reduced in such instances, and the
error signal (or the torque reference) is filtered. This resolves the problem
of torque pulsations produced by the finite resolution of the position sensor;
but, both of the aforementioned actions reduce the bandwidth of the closed–
loop speed- or position–control system. Consequently, the speed of system
response reduces and thus the cycle time of the relevant operation of the
robot arm often becomes unacceptable. At the same time, due to reduced
gains, the drive ”stiffness” is lower; hence, the drive becomes substantially
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sensitive to load torque disturbances.

To increase the bandwidth of closed–loop servo system or the speed of
system response and to remove as much as possible undesirable effects of
load torque disturbances, the controller sampling time has to be reduced,
and controller gains must be increased. To this end, the key factor that
is getting worse the drive performance becomes the ”object (drive)-digital
controller” interface or, in particular, the resolution of the shaft-position
measurement and the quality shaft-velocity estimation.

In order to obtain smooth and sufficiently accurate position and speed
signals, an observer structure is often implemented. Recall, the observer
processes the torque command and a quantized signal from the position
transducer. The observer structure including assumed parameters of the
mechanical subsystem (such as the inertia and friction) is design to simulate
the mechanical portion of the drive. In the observer, the shaft and position
signals are estimated with a extended resolution; essentially, the resolution of
these signals is limited only by the wordlenght of variables within the digital
controller/signal processor. Observer gains multiply the error between the
output of position transducer and the position estimate calculated by the
observer, and the observer is designed to eliminate uncertainties that might
appear in velocity and position estimates due to mismatched parameters and
the influence of an unknown load torque.

This paper deals with the analysis and design of the observer-based
speed and position controllers, in an environment where the shaft position
information is incomplete due to a limited resolution of the position trans-
ducer [4]. In robotics applications, the employed observer must enable the
estimation of the plant state variables even in the case of the constant (grav-
itation) or a slow varying load torque disturbances. Namely, in the regime
of high load torque or high operating speeds, the position signal and other
estimated variables derived by the observer must not differ from their ac-
tual values in the steady state. We discuss the possibility of employing the
discrete–time velocity observer with additional state integrator [4]. The so-
lution consists in the following: the observation error vector is multiplied be
the observer gain matrix, while the error of position estimation is simultane-
ously processed through the discrete integrator assuring the zero steady-state
estimation error, in the presence of a constant load torque disturbance.

In this paper, the setting of observer gains and adjustment of servo
controller parameters are accomplished simultaneously. Even though the ob-
server is decoupled from the drive dynamic, the performance of the speed/po-
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sition controller is strongly affected by the observer design. In that regard,
the observer may be viewed as an low-pass filter within the main control
loop of the servo system, and therefore both the observer gains and con-
troller parameters must be fitted in accordance with the desired dynamic
performance of the overall system comprising the servo drive and observer.
Guidances are given for selecting of controller parameters in accordance with
the desired stability margin and the achievable speed of closed-loop system
response, and the method of adjustment of observer gains is developed to
optimally reduce torque ripples caused by the quantization noise present in
the measured position input command and to achieve the desired speed of
convergence to the same position values as measured.

2. Setting of Controller Parameters

Fig. 1. shows a simple structure of the speed–controlled drive with the
electrical motor having the inertia J .

Fig. 1. Structure of speed-controled electrical drive

High–performance electrical drives (with the vector–controlled induc-
tion motors or brushless motors, for example) are usually equipped with
electromagnetic torque controllers that reveal a relatively small torque re-
sponse times that may be neglected when compared with the time constant of
mechanical portion of speed- or position–controlled servosystems [1]. Hence,
in a linear regime of operation, the generated electrical torque may be con-
sidered proportional to the torque command, Ke(t) = KT m(t), where KT

denotes the torque constant. For the regulation of the motor shaft speed, the
conventional digital PI controller with the proportional and integral gains
(KP and KI) is applied. In the plant of the system in Fig. 1., ωr, ω, TL(t),
and T denote respectively the speed reference, shaft speed, load torque dis-
turbance, and sampling period.
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For the sake of clarity in further developments, we will first deter-
mine the values of controller parameters KP and KI that match the desired
continuous–time step response of the system. Note, due to the separation
principle [5,6], values of controller parameters and appropriate gains of the
associated observer can be determined separately.

For TL ≡ 0, the z-transform of the motor speed is obtained from Fig. 1
as

Ω(z) =Z

[1 − e−Ts

s
KT

1

Js

]

M(z)

=(1 − z−1)Z
[

KT

1

Js2

]

M(z)

=C
1

z − 1

(1)

where C = KT T/J denotes the parameter characterizing the plant of system
under consideration. The parameter can be measured on a real system by a
simple experiment.

With (1), the characteristic equation of the system in Fig. 1. becomes

1 + KP C
1

z − 1
+ KIC

z

(z − 1)2
= 0

or
z2 + (KP C + KIC − 2)z + 1 − KP C = 0. (2)

The values of controller parameters can be easily obtained according to
the desired stability margin and speed of continuous–time system response
determined respectively by the relative damping coefficient ξ and natural
frequency ωn of the system dominant pair of poles inside the principal strip
of the s-plane [7]. Thus, by equating identically the coefficients of equation

z2
− 2 exp(−ξωnT ) cos(ξωnT

√

1 − ξ2)z + exp(−2ξωnT ) = 0 (3)

with the corresponding coefficients in (2), one obtaines

KP C + KIC − 2 = −2 exp(−ξωnT ) cos(ξωnT
√

1 − ξ2),

1 − KP C = exp(−2ξωnT ), (4)

wherefrom we get

KP =
1

C

[

1 − exp(−2ξωnT )
]

, (5)
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KI =
1

C

[

1 − 2 exp(−ξωnT ) cos(ξωnT
√

1 − ξ2) + exp(−2ξωnT )
]

. (6)

The speed–controlled servo for the robot hand with T = 0.0003s and
C = 0.15 is considered. Assigning ξ = 0.6 and the bandwidth of closed–loop
system fc = 50Hz (ωn

∼= 2πfc), from (5) and (6), we calculate (KP , KI) =
(0.7129, 0.056). For example, if the aperiodical step response with ξ = 1 and
ωn = 2πfc = 314.159rad/s is desired, then relationships (5) and (6) yields
(KP , KI) = (1.1453, 0.0539).

The system in Fig. 1. was simulated in details taking into account
quantization effects within the digital controller. The result of simulation
run for (KP , KI) = (0.7129, 0.056) is shown in Fig. 2. From the figure, one
can easily conclude that the speed of continuous–time system step response
and system stability margin match the assigned ones.

Fig. 2. Step response and torque command of speed-controled drive

3. Design of Identity Observer

The structure of observer–based speed–controlled drive is shown in
Fig.3. The continuous portion of controlled system comprises the digital–
to–analog converter (D/A), electromagnetic torque controller with torque
constant KT , motor, and position transducer (electromagnetic resolver with
resolver–to–digital converter).
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Fig. 3. Structure of observer–based speed-controled drive

For TL(t) ≡ 0, the z-transform of the shaft angle is calculated from Fig.
3. as

Ω(z) =Z

[1 − e−Ts

s
KT

1

Js2

]

M(z)

=(1 − z−1)Z
[
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1

Js3

]

M(z)

=
KT T 2

2J

z−1(1 + z−1)

(1 − z−1)2
M(z).

(7)

In virtue of (7), the discrete model of the plant may be represented by
the block notation and simulation diagram in Fig. 4. (a) and (b), respec-
tively.

By assuming state variables as outputs of delay elements in Fig. 4. (b),
the state and output discrete equations of the plant become

x(k + 1) = E(T )x(k) + f(T )m(k), (8)

θ(k) = D(T )x(k) (9)

with

E(T ) =

[

1 0
T/2 1

]

, (10a)

f(T ) =

[

KT T/J
0

]

(10b)

and
D(T ) = [T/2 2 ] . (10c)
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Notice, the first and second state variables represent respectively the
shaft speed [x1(k) = ω(k)] and a linear combination of ω(k) and the shaft

position θ(k) [x2(k) =
1

2
θ(k) −

T

4
ω(k)].

Fig. 4. a) Discrete model of the plant b) Simulation diagram

The observer design is accomplished directly from the observer equation
[5,6]

x̂(k + 1) = (E − KD)x̂(k) + Kθ(k) + fm(k) (11)

where x̂(k) = [ ω̂(k) x2(k) ]
T

and θ(k) are the vector of observed variables
and measured angle position, respectively; K is the observer gain matrix

K = [K1 K2 ]
T

(12)

which is to be determined according to requirements for the desired speed
of estimation of state variables and minimization of system sensitivity with
respect to a quantization noise within the digitai controller and observer.

After substituting E = E(T ), f = f(T ), D = D(T ), and K from (10)
and (12) into (11), the observer equation (11) may be rewritten in the form

ω̂(k + 1) = (1 − K1

T

2
)ω̂(k) − 2K1x̂2(k) + K1θ(k) +

KT T

J
m(k),

x̂2(k + 1) =
T

2
(1 − K2)ω̂(k) + (1 − 2K2)x̂2(k) + K2θ(k).

(13)
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Since dynamics of the feedback control system and observer in Fig. 3.
are decoupled, the speed of estimation of ω(k) may be adjusted by placing
roots of the observer characteristic equation

z2 + (K1

T

2
+ 2K2 − 2)z + K1

T

2
− 2K2 + 1 = 0. (14)

For example, gains K1 and K2 of the ”dead-beat observer” are obtained
from (14) by solving equations

K1

T

2
+ 2K2 − 2 = 0,

K1

T

2
− 2K2 + 1 = 0

(15)

for K1 and K2 to get K1 = 1/T and K2 = 3/4. Due to a substantial sensi-
tivity of the observer with dead-beat dynamic with respect to the measuring
noise, such observer cannot be applied. As it has been suggested [5], the
proper way for setting of observer gains consists in assuming the observer
dynamic to be two to four times faster than, the dynamic of the adjoined
closed-loop control system. Thus, since the bandwidth of the system in.
Fig. 1. is 50Hz, we assume the bandwidth of observer to be fc = 100Hz.
Consequently, the observer characteristic equation becomes

(z − σz)
2 = 0 (16)

with σz = exp(−2πfcT ) = 0.8282. By equating identically corresponding
coefficients of equations (14) and (16), we arrive at

K1 =
1

T
(σ2

z
− 2σz + 1),

K2 = −
1

4
σ2

z
−

1

2
σz +

3

4
,

(17)

or K1 = 98.3793 and K2 = 0.1644, for σz = 0.8282. The system with
designed identity observer is shown in Fig. 5.

Recall, for the estimation of shaft speed, the least complicated algorithm
is based on the same form as the differential calculus limit definition of the
derivative

ω̂(k) =
θ(k) − θ(k + 1)

T
(18)
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Fig. 5. Structure of speed-controlled electrical
drive with ordinary identity observer

where θ(k) is the measured shaft angle position and T is the sampling pe-
riod. The speed–controlled system with the feedback signal ω̂(k) estimated
by relation (18) was simulated first and results of the simulation run are
shown in Fig. 6. Notice from Fig. 6., due to quantization effects, rip-
ple changes appear in both the estimated shaft speed and torque command.
These changes produce fluctuations in controlled variable (motor speed) and
certain practical difficulties: the shaft speed and position are not smooth as
necessary and motor losses increase due to the pulsation current. Then,
the observer–based system in Fig. 5. with (KP , KI) = (1.1453, 0.0539),
(K1, K2) = (98.3793, 0.1644), KT T/J = 0.15, and J = 0.002 kg · m2 was
simulated taking into account the 12–bit resolution of the digital controller
and resolver–to–digital converter within the position transducer. Results of
simulation runs are shown in Figs. 7., 8. and 9. Figs. 7. and 8. demon-
strate the ability of observer to remove ripples in the torque command. The
efficiency of the shaft speed estimation is shown in Fig. 8. Notice from the
step response in Fig. 7. and corresponding observed velocity in Fig. 9. that
responses of the sistem and observer are in agreement with the requied speed
of response, stability margin, and quality of estimation with respect to the
accuracy, speed of estimation, and sensitivity to quantization noise.

As it is well known [4,5] the identity observer of such a kind is not able
to estimate state variables in the presence of constant or slow varying load
torque disturbances that may not be considered as initial values of state
variables. This fact is visualized by Fig. 9., where the upper trace shows
the estimated shaft speed for TL ≡ 0; the lower trace, obtained for constant
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Fig. 6. Step response, electrical torque, and observed shaft speed
of the system with least complicated velocity estimation

Fig. 7. Step response and electrical torque of the system
with identity observer

load torque TL = 10Nm, shows that the process of speed estimation brakes
down in both the transient and steady–state conditions.
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Fig. 8. Observed shaft speed in the system with identity observer

Fig. 9. Step response, electrical torque, and observed shaft speed of
the system in the presence of a constant load torque disturbance

4. Design of Extended Observer

To enable the correct estimation in the presence of a constant or slow
varying load torque disturbance, it is first necessary to transform observer
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equations (13) by using relationships x2(k) =
1

2
θ(k) −

T

4
ω(k) and θ(k) =

x2(k + 1) + x2(k) [see Fig. 4.(b)] to obtain:

ω̂(k + 1) = ω̂(k) + K1[θ(k) − θ̂(k)] +
KT T

J
m(k),

x̂2(k + 1) =
T

2
ω̂(k) + x̂2(k) + K2[θ(k) − θ̂(k)],

θ̂(k) = x̂2(k + 1) + x̂2(k).

(19)

Notice that in Eqs. (19) the estimation error ê = θ(k) − θ̂(k) appears
explicitly and that the observer may be employed for both the estimation of
shaft speed ω(k) and filtering of measured shaft angle position θ(k).

After applying z-transform, Eqs. (19) can be rewritten, by simple rear-
rangements, into the matrix form





z − 1 0 K1

−
T

2
z − 1 K2

0 z + 1 −1









Ω̂(z)

X̂2(z)

Θ̂(z)



 =





K1Θ(z) + KT T

J
M(z)

K2Θ(z)
0



 . (20)

In virtue of (20), the observer characteristic equation can be calculated
from

∆c(z) =

∣

∣

∣

∣

∣

∣

∣

z − 1 0 K1

−
T

2
z − 1 K2

0 z + 1 −1

∣

∣

∣

∣

∣

∣

∣

= 0 (21)

to obtain its polynomial form

(1 + K2)z
2 + (K1

T

2
− 2)z + K1

T

2
− K2 + 1 = 0. (22)

For adjustment of observer gains, the same procedure as in the case of
observer (13) may be carried out. Hence, equating identically corresponding
coefficients of Eqs. (16) and (22), one obtains

K1
T

2
− 2

1 + K2

= −2σz and
K1

T

2
− K2 + 1

1 + K2

= σ2

z
(23)

with σz = exp(−2πfcT ), where fc is the desired bandwidth of observer.
Solving Eqs. (23) for K1 and K2, we get

K1 =
4

T∆
(σ2

z
− 2σz + 1), K2 = −

1

∆
(σ2

z
+ 2σz − 3) (24)
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with ∆ = (σz + 1)2. For example, if fc = 100Hz, Eqs. (24) yield
K1 = 117.7437 and K2 = 0.1968.

As well as the ordinary identity observer designed in the preceding sec-
tion, the observer (19) cannot be used in the presence of load torque distur-
bances. To enable the estimation of ω(k) and filtering of θ(k); when constant
or slow varying load torque disturbances exist, the observrer equations (19)
are extended by adding the integration state variable, which eliminates the
steady-state integration error due to a constant load torque. The idea of
introducing of an, integral action within the structure of ordinary identity
observer commonly used in controlled electrical drives has been primarily
suggested in [4]. After introducing of the integration state ûi(k) into (19),
the equations of extended observer become:

ω̂(k + 1) = ω̂(k) + K1[θ(k) − θ̂(k)]ûi(k) +
KT T

J
m(k),

x̂2(k + 1) =
T

2
ω̂(k) + x̂2(k) + K2[θ(k) − θ̂(k)],

θ̂(k) = x̂2(k + 1) + x̂2(k),

ûi(k) = ûi(k − 1) + K3[θ(k) − θ̂(k)].

(25)

To evaluate the characteristic equation of extended observer, the same
procedure, as in the case of basic observer equations (19), may be applied.
Carrying out the procedure, we arrive to the following equation of extended
observer, in the matrix form equivalent to (20),







z − 1 0 K1 −1
−

T

2
z − 1 K2 0

0 z + 1 −1 0
0 0 K3 1 − z−1















Ω̂(z)

X̂2(z)

Θ̂(z)

Ûi(z)









=







K1Θ(z) + KT T

J
M(z)

K2Θ(z)
0

K3Θ(z)






. (26)

Let us denote by ∆∗

c
(z) the characteristic polynomial of extended ob-

server. By comparing (20) and (26), one can easily conclude that ∆∗

c
(z) is

derived as

∆∗

c
(z) = (1 − z−1)∆c(z) +

K3T

2
(z + 1). (27)

After substitution ∆c(z) from (21) into (27), the characteristic equation
∆∗

c
(z) = 0 can be reduced into the polynomial form

(1 + K2)z
3+(K1

T

2
− K2 + K3

T

2
− 3)z2

+(−K2 + K3

T

2
+ 3)z − K1

T

2
+ K2 − 1 = 0.

(28)
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The setting of gains (K1, K2, K3) may be conveniently performed as-
suming all observer poles to be same and equal to σz = exp(−2πfcT ), where
fc denotes an assigned bandwith of the observer. Thus, equating coefficients
of (28) and

(z − σz)
3 = 0, (29)

we obtain:
K1

T

2
− K2 + K3

T

2
− 3

1 + K2

= −3σz, (30a)

−K2 + K3
T

2
+ 3

1 + K2

= 3σ2

z
, (30b)

−K1
T

2
+ K2 − 1

1 + K2

= −σ3

z
. (30c)

Solving Eqs. (30) for K1, K2 and K3, we derive a suitable relation for
caiculation of optimal observer gains,





K1

K2

K3



 =





T

2
−1 + 3σz

T

2

0 −1 − 3σ2

z

T

2

−
T

2
1 + σ3

z
0





−1 



3 − 3σz

−3 + 3σ2

z

1 − σ3

z



 . (31)

Equation (31) was used to calculate numerical values of optimal observer
gains for the desired observer bandwidth fc. The calculated values are putted
in Table 1.

Table 1. Optimal values of observer gains

Sampling period T = 0.0003s

Opt. fc = 100Hz fc = 150Hz fc = 200Hz fc = 250Hz Dead-beat

gains σz = 0.8282 σz = 0.7537 σz = 0.6859 σz = 0.6242 σz = 0

K1 353.2490 788.9010 1388.2000 2141.0000 40000.000

K2 0.309 0.4830 0.6690 0.8670 7.000

K3 22.127 73.8630 172.4100 330.2300 26666.667

Fig. 10. shows the speed-controlled servo system with extended ob-
server. System was simulated with the constant load torque of TL =10Nm.
In the simulation run, the values (K1, K2, K3) = (353.249, 0.309, 22.127)
were used; values of controller and plant parameters stayed unchanged.
Traces of Fig. 11. visualize the ability of extended observer to estimate
correctly the shaft speed even in the case a constant load torque acts. Com-
paring Figs. 7., 8., and 11., one can conclude that a slight difference exists
in the step responses and quality of estimation accomplished by the basic
and extended observer.
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Fig. 10. Structure of speed-controlled electrical drive with
the observer extended by the integration state

Fig. 11. Step response, electrical torque, and observed shaft speed of the
system with extended observer and constant load torque disturbance

5. Conclusion

The structures of observer–based control systems and procedures of pa-
rameter setting, proposed in this paper, are verified by the computer sim-
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ulation and checked by an experimental setup where the electromagnetic
resolver was attached to the motor. The motor is rated7Nm, and the max-
imal speed is 3500rpm. The R/D converter with resolution of 12-bit was
used for deriving the shaft position from resolver signals. The proposed
observer–based servo controllers were implemented on the microcontroller
with the sampling time of 300µs. Results of analytical design verified by
simulation are in agreement with experimental investigations of the real sys-
tem. Note that the suggested design procedure can be applied, with minor
modifications, to controlled electrical drives with different kind of rotors.
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7. M. R. Stojić: Design of microprocessor–based system for DC motor speed control.

IEEE Transactions on Industrial Electronics, vol. 31, No. 3, August 1984, pp.
243–249.


