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Abstract. In this letter an implementation of an improved all-link line sym-

metrical condensed node for the TLM method is presented. The new node

has the advantage of containing no stubs but is still capable of modelling

inhomogeneous media on a generally graded mesh; it requires less storage

and run-time than the stub-loaded and hybrid nodes, can operate on a higher

time-step than previous nodes and it is shown to have a reduced velocity error

for axial propagation.
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1. Introduction

The Symmetrical Super-Condensed Node (SSCN) was �rst described

in [1]. Unlike other nodes currently used for TLM modelling, such as the

standard stub-loaded symmetrical condensed node (SCN) [2] and the hybrid

symmetrical condensed node (HSCN) [3], the SSCN contains no stubs. It is

shown in [1] that all the required inductance and capacitance in a medium

with electrical properties di�erent to those of a background medium can

be correctly modelled by the link lines. For a uniform TLM mesh, this is

achieved by allowing for two di�erent characteristic impedances for the link

lines at each node.

In this letter we present an improved SSCN which can be used on a

graded mesh where node spacing in di�erent directions may vary, i.e. in
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general �x 6= �y 6= �z. In order to allow an irregular mesh and non-

uniformities, whilst still maintaining synchronism, six di�erent link-line char-

acteristic impedances at a node are needed. The theoretical development of

this graded SSCN is described and the superior features of the new node are

demonstrated.

2. Derivation of the SSCN for graded mesh

The development starts by equating the electrical parameters of a cell

consisting of material of the particular medium to the link-line parameters

of the symmetrical condensed node. Using the notation Cij to indicate the

capacitance per unit length of a i-directed and j-polarized line and similarly

for Lij , it follows that in, for example, the x-direction:

"
�y�z

�x
= Czx�z + Cyx�y (1)

�
�y�z

�x
= Lzy�z + Lyz�y (2)

where " and � are the permittivity and permeability of the medium being

modelled. Similar equations may be obtained for other directions.

In order to maintain synchronism throughout the mesh, the propagation

delay must be the same on all lines at a node i.e.

�t = �i
p
CijLij (3)

where indices i; j take all possible combinations of x; y; z. The six equa-

tions obtained from (1),(2) and their y- and z-equivalents, and the six equa-

tions in (3) form a system of 12 equations with the capacitance and induc-

tance per unit length of the six lines as the twelve unknowns. This is a

non-linear system of equations, but an analytical solution can be found as

follows. Solving (3) for Lij and substituting in (1) and (2), using the normal-

ized capacitances C 0

ij = Cij�j=�k where i; j; k 2 fx; y; zg and i 6= j 6= k,

gives after some manipulation the required solution in the form:

C
0

zx = "
2(�x)2(�y)2 +B

2(�z)2(�y)2["�(�x=�t)2 � 1]
(4)

where

B = A�

s
A2 � 4(�x�y�z)2(�t)2

"�
(5)
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with

A = (�x�y�z)2
�

"�

(�t)2
� 1

(�x)2
� 1

(�y)2
� 1

(�z)2

�
(6)

Expressions similar to (4) are obtained for the other �ve normalized

capacitances. The � signs in (5) give physically equivalent solutions. The

characteristic impedance of the link lines is obtained from

Zij =

s
Lij

Cij

=
�j

�i�k

�t

C 0

ij

(7)

Because the characteristic impedance of a link-line must be positive and

real, then

A
2 � 4(�x�y�z)2(�t)2

"�
> 0 (8)

This condition can be used to determine the maximum time-step at a node.

A cubic inequality has to be solved for �t. It can be shown that a related

cubic equation has the form of a reduced cubic equation with positive dis-

criminant which has all real roots, at least one of which is positive [4] and

given as

�t =

p
"�

C cos( 1
3
arccos(D=C3))

(9)

where

C =

s
4

3

�
1

(�x)2
+

1

(�y)2
+

1

(�z)2

�
; D =

8

�x�y�z

The scattering procedure for the graded SSCN is the same as for the

uniform mesh, described in [1]. Connection and external boundaries are

modelled as with the hybrid SCN, where di�erent link-line characteristic

impedances at the interface must be taken into account. Electric and mag-

netic losses can be incorporated by adapting the routine for calculating total

nodal voltage and loop current.

3. Features of the graded SSCN node

The coding and storage requirements for the graded SSCN are the same

as for the uniform mesh SSCN, as described in [1], providing six scattering
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coeÆcients are stored for each node type. The new graded SSCN requires

storage of 20% fewer quantities per node, 12% fewer additions/subtractions

and 50% fewer multiplications per scattering operation than the HSCN.

A comparison of the maximum permissible time-step for three di�erent

nodes is made in Figure 1. Node spacing in the y- and z-directions is �xed at

�y = 3�l and �z = 5�l, while �x varies from �l to 10�l. The maximum

time-step �t is given relative to the basic time-step �to used in a uniform

mesh with node spacing �l. It is clear that the time step allowed for the new

graded SSCN is consistently higher than for the HSCN and the stub-loaded

SCN.

Fig. 1. Maximum permissible time-step for three node types.

In order to facilitate comparisons, velocity errors for one dimensional

axially directed propagation are obtained with the same types of mesh grad-

ing used in [3]. The shift in resonances in a simple 20m long cavity �lled

with material ("o; �o) is calculated and used to obtain a velocity error.

Figure 2 shows this error for a node size of 1m � 0:5m � 0:5m and

propagation in the x-direction. The maximum permissible time-step for the

HSCN is �to whilst the SSCN may be operated without loss of stability up

to a time-step equal to 1:18�to. It can be seen that if the SSCN is operated

using the same time-step �to as for the standard SCN or the HSCN, the

dispersion for the SSCN is substantially smaller. Using the maximum allow-

able time-step (1:18�to) for SSCN the dispersion become higher, however

less iterations are needed to obtained the result.
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Fig. 2. Velocity error, 1m� 0:5m� 0:5m node.

In the node size is chosen as 1m� 3m� 5m and propagation is again in

the x-direction, then the velocity error is as shown in Figure 3. Use of the

maximum allowable time-step for SSCN (1:77�to) gives better propagation

characteristics then using the maximum permissible time-step for the graded

SSCN leads to the minimum dispersion, with the extra bene�t of fewer

number of iterations.

Fig. 3. Velocity error, 1m� 3m� 5m node.
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4. Conclusion

The implementation of new symmetrical super-condensed node on a

graded mesh has been described. Substantial improvements in storage, eÆ-

ciency and maximum time-step were achieved. The axial propagation char-

acteristics of the graded SSCN are superior to those for the SCN and HSCN.

A full dispersion analysis to describe completely the behaviour of the new

node is underway.
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