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Abstract. Convolution systems are an important class of systems often used in many 
practical applications in different areas of science and engineering. In the case of 
systems with binary encoded input and output signals, finite dyadic groups are usually 
assumed as the underlying algebraic structure. Modeling and handling of such systems 
requires frequent computation of the dyadic convolution. This paper discusses a 
method for efficient computation of the dyadic convolution on Graphics Processing 
Units (GPUs) with the related algorithm implemented in Open Computing Language 
(OpenCL). We consider several important issues concerning the efficient mapping of 
the algorithm to the GPU architecture. Performance of the proposed implementation is 
compared with the referent C/C++ implementation processed on the Central 
Processing Unit (CPU). Experimental results confirm that significant speedups are 
achieved by the application of the proposed GPU calculation method. 

Key words:  Linear translation invariant (LTI) systems, Dyadic convolution, Fast 
Walsh transform (FWT), GPU parallel programming, OpenCL 

1. INTRODUCTION 

Linearity, causality, and translation invariance are features often assumed for mathe-
matical models of many systems useful in practice. These features directly lead to convo-
lution systems, since any causal linear translation invariant (LTI) system can be repre-
sented by a convolution system. At the same time, any convolution system is linear, 
causal, and translation invariant.  

Depending on the class of signals to be processed, systems can be time-invariant, 
shift-invariant, or rotation-invariant. For these systems, groups of real numbers and com-
plex numbers, respectively, are usually assumed as domains for the definition of input and 
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output signals. There are, however, areas where systems on groups different from these 
groups are more suitable as mathematical models.  

In particular, dyadic systems, i.e., systems modeled on dyadic groups (defined bel-
low), are often met in communications, computing, and cryptography. Dyadic systems 
were introduced by Weisner in [36], and their theory was further contributed by Harmuth 
[16, 17], based on the background mathematical theory by Polyak and Shreider [29]. The 
dyadic systems have been intensively studied by Pichler in a series of publications [22, 
23, 24, 25, 26, 27, 28], and by several other authors [5, 7]. Recently, logic networks, 
which can be viewed as facets of digital systems modeled on dyadic groups, were studied 
from the system theory point of view [34].  

In study and practical applications of dyadic systems, computation of the dyadic con-
volution is frequently required. Efficiency of these computations often determines the 
applicability of such mathematical models in engineering practice.  

With that motivation, in this paper we present an efficient technique for an accelerated 
calculation of the dyadic convolution, through a parallel implementation of the fast algo-
rithm derived from the convolution theorem and processed on the Graphics Processing 
Unit (GPU). Due to the convolution theorem, computation of the dyadic convolution con-
verts into performing two direct and an inverse Walsh transform, which can be done by 
the corresponding FFT-like algorithms, i.e., the Fast Walsh Transform – FWT [4, 8, 18]. 
The proposed implementation is developed using the Open Computing Language 
(OpenCL) and processed on a GPU. Experimental results and comparisons with the clas-
sical implementation confirm that the proposed method leads to a significant computa-
tional speedup.  

This paper is based on a shorter preliminary version presented at the conference 
ICEST 2011 [11], and it is organized as follows. After an introduction to the necessary 
background theory in Section 2, Section 3 presents a brief review of related work. Section 
4 is devoted to the description of the mapping of the fast algorithm for computing the 
dyadic convolution to the GPU architecture and the design of the corresponding OpenCL 
implementation. In Section 5, we present the experimental environment used to evaluate 
the method, and report experimental results. The closing Section 6 offers some conclu-
sions drawn from the presented research. 

2. BACKGROUND THEORY 

2.1. Dyadic Convolution 

Convolution is a mathematical operation that expresses relationships between values 
of two signals (modeled by functions f and g) in points at a fixed distance. The convolu-
tion C = f  gis a function that resembles either the function f or the function g, modified 
by the other.  

When the finite dyadic group is used as the algebraic structure on which the convolu-
tion is defined, we use the term dyadic convolution [4, 18, 30, 32].  

The finite dyadic group of order n is defined as 2 21

n
n

i
C C


  , where C2 = ({0,1}, ), and 

 stands for the addition modulo 2, and   is the direct (Cartesian) product.   
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For two functions f, g : 2
nC   , where is the field of rational numbers, the dyadic 

convolution is defined as 
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In binary notation, x = (x1, x2,…, xn), and  = (1, 2,…,n), where xi, i  {0,1}. 
A direct calculation of the dyadic convolution from (1) has the exponential complexity 

in the number of inputs n and is unfeasible in practice for large signals. Therefore, algo-
rithms for the fast computation of convolution are derived by using the convolution theo-
rem [18] on the corresponding algebraic structure.   

2.2. Walsh Transform 

The Walsh transform [18] is defined by the Walsh matrix 
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where   denotes the Kronecker product and 
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W  (3) 

is the basic Walsh matrix. From (2), W(n) is generated by the Kronecker product and, 
therefore, the Walsh functions (rows of W(n)) appear in the Hadamard order, see for in-
stance [17].  

Since W(n) is a self-inverse matrix up to the scalar 2-n, the inverse Walsh transform is 
defined as 

 1( ) 2 ( ).nn n W W  (4)      

It follows that both the direct and the inverse Walsh transforms can be computed by 
using the same algorithm. 

The Walsh spectrum S f , h  = [Sf,h (0), Sf,h (1), … , Sf,h (2
n-1)]T of a function f : 2

nC   , 

specified by the function vector F  = [f (0), f (1), …, f (2n-1)]T, is defined as 

 , ( ) .f h nS W F  (5) 

The spectral coefficients appear in Hadamard ordering, which is indicated by the in-
dex h in Sf,h. The function f is reconstructed from the Walsh spectrum as  

 1
,2 ( ) ,n

f hn F W S  (6) 

and (5) and (6) form the Walsh transform pair. 
Example 1. If  f : 2

2C    is specified by the function vector F = [1, 0, 1, 1]T, then 

the corresponding Walsh spectrum Sf,h = [Sf,h (0), Sf,h (1), Sf,h (2), Sf,h (3)]T can be calcu-
lated directly by using its definition (5) 
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2.3. Fast Walsh Transform  

The computation of the Walsh transform based on its definition (5) is inefficient, since 
it expresses the O(N2) time complexity, where N = 2n is the size of the input vector. For-
tunately, a more efficient algorithm, the Fast Walsh transform (FWT) with the time com-
plexity of O(NlogN) exist, see for instance [4, 18]. 
The Fast Walsh transform can be defined by using the following factorization [18] 
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The matrix ( )
iw nC defines the partial Walsh transform and corresponds to the i-th step 

of the FWT. This particular factorization leads to an FFT-like algorithm of the Cooley-
Tukey type [12, 18].  

Example 2. For the function f : 2
2C    in Example 1, the Walsh spectrum can be 

calculated with 4 additions and 4 subtractions by applying the FWT algorithm, instead of 
16 multiplications and 12 additions in the direct computation using the definition. This 
algorithm is derived from the following factorization of the matrix W(2) 

 , 1 2(2) ( ) ,f h  S W F C C F  (10) 
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Computations in C1 and C2 can be performed by the algorithms whose flow-graphs are 
shown in Fig. 1 (a) and (b). In this figure, the solid and dashed lines denote addition and 
subtraction, respectively.  
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(a)                    (b) 

Fig. 1 Flow-graphs of the FWT for n = 2, 
(a) First step derived from C1, (b) Second step derived from C2. 

Therefore, computing the Walsh spectrum goes as follows 
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2.4. Convolution Theorem 

In classical Fourier analysis, the convolution theorem states that the Fourier trans-
form of the convolution function C = f  g is the componentwise product of the Fourier 
transforms of f and g, thus Sf  g = Sf  Sg, see for instance [4, 8, 18]. In other words, a 
rather complex operation in the original domain converts into a simple operation in the 
spectral domain.  

For functions on the finite dyadic group 2
nC , the computation of the dyadic convolu-

tion through the application of the convolution theorem is done as follows 

 2 ( )(( ( ) )( ( ) )).n
f g n n n
  -1C W W F W G  (14) 

Therefore, an efficient algorithm for the computation of the dyadic convolution can be 
developed in terms of the FWT, as illustrated in Fig. 2 for n = 2, N = 4.  

 

Fig. 2  Computation of the dyadic convolution through the application of the 
convolution theorem for n = 2, N = 4 
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Example 3. For two functions f, g : 2
2C   , given by their respective function vec-

tors F  = [1, 0, 1, 1]T and G = [0, 1, 0, 1]T, performing the FWT on each of them produces 
their Walsh spectra Sf,h = [3, 1, -1, 1]T and Sg,h = [2, -2, 0, 0]T, respectively. The result of 
the componentwise multiplication of these two spectra is Sf.g,h = [6, -2, 0, 0]T. After the 
inverse FWT is performed on Sf.g,h, followed by multiplication with the scaling factor 2-2, 
we get the dyadic convolution coefficients [1,2,1,2]T

f g C .     

3. BACKGROUND WORK 

The fast algorithm for the dyadic convolution is based on the application of the Walsh 
transform which is the Fourier transform on finite dyadic groups. The implementation of 
various Fast Fourier Transforms (FFTs) on different technological platforms is a widely 
considered topic, see for instance [4, 8, 11, 15] and references therein. The calculation of 
dyadic convolution on classical Central Processing Units (CPUs) through the application 
of the convolution theorem, both on vectors and decision diagrams, is presented in [30]. 
Reference [4] presents an application of the dyadic convolution for the fast multiplication 
of hyper-complex numbers. 

In recent years, the technique of performing General Purpose computations on the 
GPU (GPGPU) has proven to be a suitable approach in solving many computationally-
intensive tasks [2, 3, 12, 15, 19]. In particular, the GPU-accelerated calculation of FFT 
algorithms using CUDA is described in [15, 20]. Reference [12] presents an OpenCL 
implementation of the FWT that uses the GPU hardware and leads to significant speedups 
over traditional CPU processing. 

However, in our best knowledge, there are no publications except the preliminary ver-
sion of this work [11] that discuss neither CUDA nor OpenCL GPU implementations of 
the fast algorithm for the computation of dyadic convolution based on the convolution 
theorem. This fact, together with the intended application of the dyadic convolution for 
the modeling of dyadic LTI systems, was the motivation for the research reported in this 
paper. 

4. MAPPING OF THE ALGORITHM AND IMPLEMENTATION DETAILS 

The convolution theorem, expressed in (14), leads to the following fast algorithm for 
the calculation of the dyadic convolution, illustrated by the example in Fig. 2: 

Step 1. Perform the FWT on f and g and compute their Walsh spectra Sf and Sg. 

Step 2. Perform the componentwise multiplication of Sf and Sg. 

Step 3. Perform the inverse FWT over SfSgto obtain Cfg. 
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Algorithm 1 FAST CALCULATION OF DYADIC CONVOLUTION C = f * g 
1 Allocate buffers buffer1 and buffer2 in the global memory of the GPU device. 
2 Transfer input vectors f and g from the host CPU memory to GPU buffers buffer1 and 

buffer2, respectively. 
3 Perform the Walsh transform on vectors stored in buffer1 and buffer2 using the following 

in-place OpenCL implementation of the Cooley-Tukey algorithm for the FWT: 
a. For each step of the FWT, from step ← 0 to step ← (log2N) - 1, call the OpenCL kernel 

for the FWT with input parameters being the appropriate buffer in the GPU’s global 
memory and the value of the current step 2step. The kernel is executed by N/2 threads in 
parallel on the GPU. Each thread reads two elements, determined by (15) and (16), 
from the buffer, performs the operations defined by the Walsh matrix (1)W  and stores 
back the results in the same locations. 

4 After computing the FWT of both vectors, execute the OpenCL kernel for the componen-
twise multiplication of the two Walsh spectra with N threads executed in parallel. The re-
sulting vector is stored in buffer1.  

5 Perform the inverse FWT on buffer1 using the same kernel as for the FWT.  
6 Scale the contents of buffer1 with the factor 2-n using the OpenCL kernel with N threads 

executed in parallel. 
7 Transfer the contents of the GPU buffer buffer1, which holds the resulting dyadic convolu-

tion coefficients, back to the host CPU memory. 

Since both multiplication and componentwise multiplication of vectors can be done 
fast on modern CPUs and GPUs, the key issue in developing an efficient implementation 
of the above algorithm is performing the FWT and the inverse FWT, required in steps 3 
and 5 of Algorithm 1, in an efficient manner. Therefore, we developed a kernel containing 
an OpenCL in-place implementation of the Cooley-Tukey algorithm for the FWT [12, 
18]. As in all FFT-like algorithms, steps of the algorithm are executed sequentially and 
parallelism is used only within the steps. In each step, N/2 threads are executed in parallel. 
This large number of threads permits to overcome the data access latency to the GPU 
global memory [2, 3].      

Each thread reads two elements from the GPU buffer with indices op1 and op2 calcu-
lated as 

 op1 ← thread_id mod step + 2×step×(thread_id/step),  (15) 

 op2 ← op1 + step.   (16) 

Parameters thread_id and step are the global identifier of the thread and the identifier 
of the current step of the algorithm, respectively. All threads execute the elementary but-
terfly operation defined by the basic Walsh transform matrix (1)W and store the results 

back in the same locations in the GPU memory, as in other implementations of the in-
place FWT algorithms. 

The componentwise multiplication of vectors is also performed by the corresponding 
OpenCL kernel which is executed by N threads in parallel, with each thread multiplying 
the two corresponding elements of the input vectors.  

After the multiplication, the inverse FWT is performed with the same kernel that is 
used for the direct transform, followed by scaling with 2-n. The scaling is also performed 
in parallel through the execution of the corresponding OpenCL kernel. 
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Before executing any of the kernels, both input vectors are transferred from the main 
memory to the GPU global memory. After the calculations, the resulting convolution co-
efficients are copied back to the host. These memory operations take a significant share of 
the total GPU running times as reported in Section 5.  

5. EXPERIMENTAL ENVIRONMENT AND RESULTS 

The test platform used to perform the experiments is an HP Pavilion dv7-4060us 
notebook computer (see Table 1). The OpenCL kernels are developed using MS Visual 
Studio 2010 Ultimate and ATI APP SDK 2.3 [1]. ATI Stream Profiler 2.1 is used for 
GPU performance analysis, in accordance with instructions provided in [2]. The source 
code is compiled for the x64 platform. The referent C/C++ implementation is compiled 
with the maximum level of performance-oriented compiler optimizations.  

As in all FFT implementations over vectors, the resulting performance is independent 
of the function values. Therefore, we perform the experiments using randomly generated 
binary vectors. All values in Table 2 are an average for 10 program executions.  

We show the GPU calculation time and, also, the time for transfer of data to/from the 
GPU which offers a more complete perspective to the reader. To estimate the perform-
ance of the proposed method, we performed a comparative analysis with respect to the 
classical C/C++ implementation of the same algorithm processed on the CPU. 

Table 1. Specification of the experimental platform.  

CPU AMD Phenom II N830 triple-core (2.1 GHz) 
RAM 4GB DDR3 
OS Windows 7 (64-bit) 
GPU 
- engine speed 
- global memory 
- compute units 
- processing elements 
- price 

ATI Mobility Radeon 5650  
650 MHz 
1 GB DDR3 800 MHz 
5 
400 
~ 100$ 

The results of the experiments are presented in Table 2 and Fig. 3. The OpenCL im-
plementation processed on an inexpensive commodity GPU (Table 1) clearly outperforms 
the referent CPU implementation, by a factor of up to 5.5 when only calculation times 
are compared, and by a factor of up to 4.5 when total times, including memory transfers 
to/from GPU, are taken into account. The execution of the same kernels on a more power-
ful GPU (with more stream cores and a larger memory bandwidth) would directly lead to 
much larger speedups, which would not be the case if a more powerful CPU was used for 
the referent C/C++ implementation [3, 12]. 
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Table 2. Running times for the referent CPU and the proposed GPU implementation 

Time [ms] 
GPU n = log2N 

CPU Computation 
time 

Memory 
time 

4 0 0 0 
8 0 0 1 

10 0 1 1 
16 15 3 2 
18 53 6 3 
20 108 24 9 
23 1201 220 45 
24 2512 469 86 
25 5002 998 147 

n – Number of input variables 
CPU – Referent C/C++ implementation on the CPU  
GPU – Proposed OpenCL C implementation on the GPU 

 

Fig. 3. Computation times for the referent CPU and the proposed GPU implementation 

6. CONCLUSIONS 

The dyadic systems are a particular class of linear translation invariant systems on fi-
nite groups modeled in terms of the dyadic convolution. Efficient computation of the dy-
adic convolution is therefore essential in practical applications of such systems. 
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The OpenCL parallel algorithm implementation for computing the dyadic convolution, 
which is processed on the GPU, provides considerable speedups, as documented by ex-
periments over randomly generated binary functions and a comparison with the referent 
C/C++ CPU implementation of the algorithm. 

The same OpenCL implementation of the dyadic convolution can also be used for the 
fast calculation of the dyadic autocorrelation. The proposed method could, therefore, ex-
tend the area of applications of these operations to problems where algorithm running 
time is an essential and, often, limiting factor.  
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IZRAČUNAVANJE DIJADIČKE KONVOLUCIJE NA 
GRAFIČKIM PROCESNIM JEDINICAMA ZA EFIKASNO 

MODELOVANJE DIJADIČKIH LTI SISTEMA 

Dušan B. Gajić, Radomir S. Stanković 

Konvolucioni sistemi predstavljaju važnu klasu sistema koji se često koriste u mnogim 
praktičnim primenama u različitim oblastima nauke i inženjerstva. U slučaju kada su ulazni i 
izlazni signali binarno kodirani, obično se kao algebarska struktura na kojoj su definisani 
odgovarajući sistemi uzimaju konačne dijadičke grupe. Modelovanje i rad sa ovakvim sistemima 
zahtevaju veoma česta izračunavanja dijadičke konovlucije. U ovom radu predstavljen je metod za 
efikasno izračunavanje dijadičke konvolucije na grafičkim procesnim jedinicama (Graphics 
Processing Units - GPUs) pri čemu je odgovarajući algoritam implementiran primenom programskog 
jezika Open Computing Language (OpenCL). Razmotreno je nekoliko veoma značajnih pitanja 
koja se tiču efikasnog mapiranja algoritma na arhitekturu grafičkih procesnih jedinica. 
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Performanse predložene implementacije upoređene su sa referentnom C/C++ implementacijom 
koja se izvršava na centralnoj procesnoj jedinici (Central Processing Unit - CPU). Eksperimentalni 
rezultati potvrđuju da primena predloženog metoda za izračunavanje dijadičke konvolucije na 
GPU donosi značajna ubrzanja u odnosu na referentnu CPU implementaciju.  

Ključne reči:  Linearni translaciono nezavisni sistemi, Dijadička konvolucija, Brza Walsh-ova 
transformacija, GPU paralelno programiranje, OpenCL 

 


