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Abstract. Chaotic systems of J.C. Sprott [11-16] based on electric circuits turn to be 
attractive examples of week chaos, a form of chaos that eventually might occur in such 
sensible applications like automatic control or robotics. This note contains some 
further considerations concerning some modifications of a 3D dynamic flow, known as 
jerk dynamical system of J.C. Sprott [15]. More specifically, the type of equilibrium 
point is analyzed and the Poincaré maps and bifurcation diagrams are constructed. 
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1. INTRODUCTION 

Trying to simplify famous Rössler’s dynamical model [10] given in the form of 3D 
system of ODE’s, Sprott [11] came up with fourteen algebraically distinct cases with six 
terms and a single nonlinearity and five cases with five terms and two nonlinearities. One 
of the consequences of simplicity is that majority of these systems can be written in the 
form of an explicit 3rd-order ordinary differential equation of the “jerky” form 

 ( , , ),x J x x x    (1) 

after the mechanical term jerk - the third order time derivative of the displacement. Thus, 
in order to study different aspects of chaos, differential equation (1) can be considered 
instead of 3D system. Sprott’s work inspired Gottlieb [2] to pose the question of finding 
the simplest jerk function that still generates chaos. Answering to this, 1997 Sprott [12] 
proposed chaotic jerk circuit containing just 5 terms and one quadratic nonlinearity  
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 2( , , )J x x x A x x x       , (2) 

in which chaos occurs for damping parameter values 2.0168 < A < 2.0577. This seems to 
be the simplest quadratic jerk function that is able to produce chaos for. The system has 
the greatest Lyapunov exponent   0.0551, for A = 2.017, which implies maximal chaos 
in this “minimal chaotic system” ([15], [16]).  

Trying to simplify (2), Sprott did many experiments (see [12], [15], [14], [13]), but 
equation (2) remains the simplest jerk equation with quadratic nonlinearity. In [16] Sprott 

and Linz have experimented with reducing the quadratic term 2x  in (2) by x , ending up 

with a modified jerk function   

 ( , , ) .J x x x A x x x        (3) 

But, as it is shown in [16] this replacement leads to a non-chaotic system. For further 
results with Sprott type chaotic systems see [1], [4], [6]-[9]. 

Finally in the first part of this note [5], the authors investigate existence of chaotic 
trajectories in a jerk dynamical system that is placed somehow in between jerk systems 
given by (2) and (3) by setting 

 ( ) ,kx A x g x x       (4) 

and 

 ( ) ,kx A x h x x       (5) 

where the left semi-quadratic function gk, and right semi-quadratic function hk are de-

fined as a compromise between nonlinear terms 2x  and x , namely 
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where k  0 is a real parameter.  

The method of verifying existence of chaos was fourfold: 1o Construction of trajecto-
ries of a given system in phase 3D space ( , , )x x x   ; 2o Visualization at least one of the 

variable’s solution, say x(t), for 0  t  tmax; 3
o Finding the discrete Fourier power spectra 

of x(t); 4o Evaluation of the first Lyapunov exponent 1, which in the case of chaos should 
be strictly greater than zero. 
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Table 1. Lyapunov 1 exponent for dynamical system (4) 
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Experiment reveal existence of weak chaos in the system (4) with left semi-quadratic 
function gk, while in (5) no chaotic regime was found. Related diagrams and data are 
given in in [5]. Table 1 displays the first Lyapunov exponent 1  for various values of 
damping parameter A and slope k of the linear part of the function gk. It is noticeable that 
chaotic regime is preserved only for values of A, much bellow the “chaotic” range 
[2.0168, 2.0577] needed for original system (2). Also, smaller values A are compensated 
by higher values of slope. More precise, chaos exists for the family of pairs 
(A, k) = (0.9 + 0.4, 1.5  0.75),   [0, 1], which makes A and k run through the inter-
vals A  [0.9, 1.34] and k  [0.75, 1.5], but with inverse monotonicity. This makes the 
largest Lyapunov exponent to run in the interval 0.0286423 <1 < 0.0554254 which is 
certain indicator of chaotic dynamics in (4). The values of k < 0.6 can produce only regu-
lar flow, no matter the value of A. 

In addition to phase trajectory, time diagram, Fourier spectra and leading Lyapunov 
exponent, two more indicators are customary in identifying chaotic dynamics are Poincaré 
sections and bifurcation diagrams. Both will be discussed for system (4) in the sequel. 

2. JACOBIAN ANALYSIS  

Putting equation (4) in the form given by (1) the jerk equation is obtained 

 ( , ) ( , , ) ( ) , 0,A k kx J x x x Ax g x x A           (7) 

where gk is left semi-quadratic function, defined by (6). Introducing usual substitutions 
( ) ( )y t x t   and ( ) ( )z t x t  , (7) is recasted to the system of three coupled ODJ’s 
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where A  0. Solution of the system 0
dx dy dz

dt dt dt
   , which is y = 0, z = 0, 

x + gk(y)  Az = 0, yields the equilibrium point y = 0, z = 0 and x = gk(0) = 0. The 
nature of the equilibrium point is characterized by the eigenvalues of the Jacobian matrix 
J = (x, y, z) associated with (8)  
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An obvious consequence is that eigenvalues of Jacobian gravely depends on the sign 
of ( ) ( )y t x t   in the neighborhood of equilibrium point. More precisely, the characteristic 

equation approaches to 
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Fig. 1  The loci of eigenvalues of the Jacobian in equilibrium in complex plane for 
0.9 1.3A   and 0.75 1.5k  for 0y   
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The solutions 1(A, k), 2(A, k) and 3(A, k) of (10) in the neighborhood of the 
equilibrium point contain the solutions of (9) as its subset (for k = 0). Since pretty cum-
bersome, these exact expressions will not be presented here.  

What is of interest is graphical insight into positions of the clusters of points for values 
A = 0.9 + 0.4, k = 1.5  0.75,   [0, 1]. Fig. 1 shows positions of these clusters as thick 
spots in complex plane while dotted line represents the extension of (A, k) trajectory when 
  exceeds the unit interval.  

The same conclusion refers to Fig. 2, where the clusters, although configured a little 
bit differently (following different dotted trajectories) repeat the same pattern. 

According to this graphical analysis, it can be recognized that, as in the case of the 
Sprott original system (2), the point (0, 0, 0) of phase space is spiral saddle with index 2 
(see [5]). Since, index as usually, indicates the dimension of unstable manifold (outset) 
we face here with a radial flow toward the equilibrium point along the inset line and then, 
after passing equilibrium point, an outward spiral in the outset plane. 

 

Fig. 2  The loci of eigenvalues of the Jacobian in equilibrium in complex plane for 
0.9 1.3A   and 0.75 1.5k  for 0y   

3. POINCARÉ MAPS  

In the case of autonomous system of dimension n, the Poincaré map is the intersection 
of its phase trajectory and a hyperplane  of dimension n – 1 (called Poincaré plane or 
section) that is transversal to this trajectory.  The system (4) is autonomous dissipative 
flow with n = 3. Its phase trajectory P(t) is the mapping 

max: ( ( ), ( ), ( )), 0P t x t y t z t t t  , 

where one of its components, say z(t) change its sign, as the graph in Fig. 3 (upper, left) 
shows. So, it is reasonable to take the plane : z = 0 as Poincaré plane. The Poincaré map 
 is the set of intersection points  = P(t)  , distributed in time in strictly increasing, 
infinite sequence of sample “moments” t1, t2, t3,…. Thereby, in the case of periodic orbit, 
it consists of isolated points  = {(x(ti), y(ti)), i = 1, 2, 3,…} while when dynamical regime 
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slides to chaos,  are represented by a continuous subset of . Since the analytic methods 
for finding  are very complicated, a numerical calculation is an acceptable alternative. 
sets for the system (4) with A = 1.3 and k = 0.7are calculated in 400, 1200 and 5000 
points {ti}. They are shown in Fig. 3. Increasing the number of sampling points makes  
to approach to a continuous set, which indicates chaos. 

 

Fig. 3 Poincaré map for system (4) for A = 1.3 and k = 0.7 

4. BIFURCATIONS 

We conclude this investigation of modified Sprott jerk dynamical system (4) by con-
structing bifurcation diagrams using the value of the slope k of the left part of the semi-
parabolic function (6) as bifurcation parameter.  As expected, the diagrams confirm once 
again that we have characteristic chaotic behavior of period doubling. For fixed parameter 
A (1.25, 1.3 and 1.35) increasing the slope k from 0 to 2, leads to cascade of bifurcations 
with characteristic non-chaotic windows, and many smaller bifurcations all around. All 
three diagrams are presented in Figures 4, 5 and 6.  

Numerical method for ODE solving used for creating diagrams in Fig. 3, Fig. 4, Fig. 5 
and Fig. 6 are implicit Runge-Kutta with max. step 0.001. The initial conditions are set to 
x0 =  0.1, y0 = 0.1 and z0 = 0.3. The bifurcation diagrams are calculated in 2000 points 
for k  [0, 2]. All programs are implemented in Mathematica 7.0. 
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Fig. 4 The bifurcation diagram for dynamical system (4) with A = 1.25  
 

 

Fig. 5 The bifurcation diagram for dynamical system (4) with A = 1.3 
 

 

Fig. 6 The bifurcation diagram for dynamical system (4) with A = 1.35 
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O JEDNOM “JERK” DINAMIČKOM SISTEMU II 

Sonja Gegovska-Zajkova, Ljubiša M. Kocić 

Haotični sistemi koje je najpre u obliku elektronskih kola uveo J.C. Sprott [11-16] pokazali su 
se kao zanimljivi primeri izvora slabog haosa – oblika haosa koji je jedino dozvoljen u osetljivim 
sistemima kao što su sistemi automatske kontrole i robotike. Ovaj rad je nastavak istraživanja 
jedne modifikacije 3D dinamičkog toka, koji je poznat kao jerk-dinamički sistem J.C. Sprott-a 
[15]. Konkretno, analiziran je tip tačke ekvilibrijuma, Poincaré-ovi preseci kao i bifurkacioni 
dijagrami.  

Ključne reči: “jerk”dinamoka, haos, spiralno sedlo, Poincaré-ov presek, bifurkacija 

 


