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Abstract. In this paper we present a multi-parametric algorithm for control of industrial 
furnaces with high consumption. Recently proposed algorithms for hybrid control of 
nonlinear systems introduce big computational burden. In order to reduce the 
optimization problem we use the multiple-model approach. The algorithm is based on 
linearization of the nonlinear plant in multiple operational points. These operational 
points are chosen after detailed analysis of the plant’s behavior and the set of referent 
inputs. Then we construct model based predictive controller for each defined linearized 
model of the system, and we connect these states into one switched MPC. This controller 
automatically switches the prediction model according to the user instructions. 
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1. INTRODUCTION 

Process industries need an easy to setup predictive controller that doesn’t cost much 
and maintains an adaptive behavior which accounts for time-varying dynamics as well as 
potential plant miss-modeling. MPC has the ability to fulfill the expectation of the engi-
neers and successfully control complex processes. 

As presented in [1] the essence of model-based predictive control (MBPC) or model 
predictive control (MPC) lies in optimization of the future process behavior with respect 
to the future values of the executive (or manipulated) process variables. Throughout this 
paper the abbreviation MPC [10], [11] shall be used. The use of linear, non-linear, hybrid 
and time-delay models in model-based predictive control is motivated by the drive to 
improve the quality of the prediction of inputs and outputs, as well as to reduce the com-
puter burden during the optimization [1-5]. 
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This paper is organized as follows: we briefly present the basic concepts of MPC the-
ory, and especially multiple-model model predictive control in section 2. Then in section 
3 we introduce the multiple-model MPC technique for control of a high consumption 
industrial furnace. In section 4 we present the simulation result performed on a model of 
the furnace that was developed in our previous work. At the end, in section 5, we point 
out the conclusions from the paper and give some further research headings in the area of 
nonlinear and multiple-model model predictive control. 

2. THE BASICS OF MODEL PREDICTIVE CONTROL 

2.1. The general idea of MPC  

The general idea behind MPC is simple indeed. If we have a reliable model of the 
system, represented as in (1) or similar, we can use it for predicting the future system 
behavior. At each consecutive time of sampling k the controls inputs (2) are calculated, 
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where A,B,C,D are the system matrices; Nu represents the length of the control horizon 
and the notation u(k + p  k) means the prediction of the control input value for the future 
time k + p calculated at time k. These control inputs are calculated in such a way as to 
minimize the difference between the predicted controlled outputs y(k + p  k) and foreseen 
set points r(k + p  k) for these outputs, over the prediction horizon Ny, (p = 1,2,…Ny). 
Then only the first element from the calculated control inputs is applied to the process, 
i.e. u(k) =u(k  k). At the next sample time (k + 1), we have a new measurement of the 
process outputs and the whole procedure is repeated. 

The most commonly used cost function is the Quadratic, and it can be formulated as: 
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2.2. The idea of multiple-model MPC  

The general idea behind MPC is simple indeed. If we have a reliable model of the 
system, represented as in (1) or similar, we can use it for predicting the future system 
behavior. At each consecutive time of sampling k the controls inputs (2) are calculated, 

For control the process is approximated with p linear affine models that built a hybrid 
PWA state space model as presented in [6] 
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where k is the discrete time index, Ai, Bi, Ci, Di state space matrices, fi, gi the affine vec-
tors, u 

m input, x 
n state, and Pi valid region of the state+input space in m+n. The 

system is subject to input, state and output constraints. For each region Pi a model exists 
and for it the corresponding mp-MPC controller is designed. The currently active model is 
determined by Model selection algorithm from estimated state values. At each time step, the 
active controller computes the control signal. The control scheme is presented in Fig. 1. 

 

Fig. 1. Multiple-model predictive control scheme  

Model selection algorithm is the most important part of the multiple-model MPC. 
Usually it is a function depending on the inputs and outputs of the system which results 
with appropriate model of the system. In more complicated systems Kalman filter is used 
to estimate the system states, and afterwards the algorithm selects the appropriate model. 
In our case this functions depend on the operating point of the furnace which can be es-
timated from the referent input. 

3. MULTIPLE-MODEL MPC FOR HIGH CONSUMPTION INDUSTRIAL FURNACES 

For exploring the possibilities of Model Predictive Control, we chose MIMO system 
with three inputs and three outputs. This system represents a model of a high consumption 
20 MW gas-fried industrial furnace, and it has been previously identified in [7]. 

Structural, non-parametric and parameter identification has been carried out using step 
and PRBS response techniques in the operational environment of the plant as well as the 
derivation of equivalent state realization. With regard to heating regulation, furnace 
process is represented by its 3x3 system model. The families of 3x3 models have 9 con-
trolled and 9 disturbing transfer paths in the steady and transient states (Fig. 2).  
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Fig. 2. Input/Output Diagram of the conceptual MIMO system model  
for gas-fired furnace in FZC “11 Oktomvri” 

Experiments involved the recorded outputs (special thermocouples): temperature 
changes in the three zones in response to input signal change solely in one of the zones. 
Firstly, only the burners at the first zone were excited, and data on temperatures in all 
three zones are collected; the temperature Tj and the corresponding fuel flow Qi for each 
input-output process channel (transfer path) were recorded.  

The system’s state space model is presented in (5).  
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Where the matrices A, B, C, and D have the following values: 
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and time constants are T1=6.22 min and T2=0.7 min. For this paper we have adopted this 
model slightly adding a nonlinear relation between the command and the opening of the 
control valves. This nonlinearity disables the use of one linearized model for all operating 
regimes on the furnace and required more intelligent control method. The other solution is 
to use only one model linearized at the most used operating point. 

These types of processes are difficult to handle also because of the interactions be-
tween inputs and outputs, and are usually solved with decoupling control. In this paper we 
will compare MMMPC with casual model predictive control since we have explained the 
benefits that MPC has over the conventional decoupling control used in industry in our 
previous work [9]. According to the previous tests in [8] the best values for the length of 
the prediction and control horizon are 70 and 8 respectably.  
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The control goal is to keep the temperature in the three zones of the furnace at the 
referent value. The referent value for the temperature depends on the working regime of 
the furnace. In this paper we consider three working regimes which operate on three dif-
ferent temperatures: 600, 800 and 950 degrees Celsius. The goal is to control the furnace 
so that the error is minimal and the fuel consumption is at the lowest possible level. 

 

Fig. 3. Simulink file for the simulation in which we compare the MPC  
with the multiple model MPC (switched MPC) 

During the simulation we will monitor the temperatures in the three zones of the fur-
nace and the control signals which represent the percent of fuel going through the valve. 

In order to achieve satisfactory control for this plant we need to use at least three dif-
ferent models of the high consumption industrial furnace to predict the future behavior. 
The models are linearized around different operating points of the plant. Each of the op-
erating points corresponds to one of the basic operating regimes of the furnace: low, 
normal and full power. On the other hand for the simulation with ordinary MPC, we use 
only one linearized model of the plant, in this case linearized around 800 degrees Celsius. 
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4. SIMULATION RESULTS 

In this paper we will present the results derived from simulation use of a multiple-model 
MPC algorithm controlling a high consumption industrial furnace. The MATLAB-Simulink 
model that we have designed in order to execute the simulation is presented in Fig. 3.  

The results of the simulation executed under the previously defined conditions are 
presented in Figures 4, 5, and 6. Each of the figures represents one of the temperatures in 
the three furnace zones. 

 
Fig. 4. Temperature in zone 1 - MPC vs. MMMPC (switched MPC)  

 
Fig. 5. Temperature in zone 2 - MPC vs. MMMPC (switched MPC)  
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Fig. 6. Temperature in zone 3 - MPC vs. MMMPC (switched MPC)  

The solid blue line represents the control with regular MPC algorithm, and the inter-
cepted red line represents the results obtained with multiple model MPC. It is obvious that 
MMMPC control drives the system faster to the steady state. 

The control signals are shown in Fig. 7. The values of the control signals (which rep-
resent the fuel consumption from 0 to 100% as a summary for the three valves) are not 
very different. Nevertheless it is obvious that the MMMPC has lower fuel consumption. If 
we calculate the fuel consumption norms during the time of the experiment we obtain that 
the norm for the consumed fuel for control with MMMPC is 1535, and the norm for fuel 
consumption with the MPC algorithm is 1549. As we can see there is a difference, and it 
is in favor of MMMPC. This means that by using the MMMPC algorithm, we managed to 
obtain a faster response for a smaller fuel consumption norm. 

 
Fig. 7. Fuel consumption norm - MPC vs. MMMPC (switched MPC)  



138 G. STOJANOVSKI, M. STANKOVSKI, G. DIMIROVSKI 

5. CONCLUDING REMARKS 

In this paper we have presented a multiple-model (switched) model predictive con-
troller for optimizing the control on a 20 MW industrial gas-fried furnace in the factory 
FZC “11 Oktomvri” in Kumanovo, Macedonia. This controller drives the furnace to the 
equilibrium point faster than the regular MPC and at the same time increases the effec-
tiveness coefficient of the furnace while reducing the consumption.  
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VIŠE-MODELSKO PREDIKTIVNO UPRAVLJANJE ZA 
INDUSTRIJSKE PEĆI VELIKE POTROŠNJE 

Goran Stojanovski, Mile Stankovski, Georgi Dimirovski 

U ovom radu, prezentujemo više parametrijski algoritam za upravljanje industriske peći velike 
potrošnje. Nedavno predloženi algoritmi za hibridno upravljenje nelinearnim sitemima zahtevaju 
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veliku računarsku moć. Da bi umanjili obim problema optimizacije, koristimo više-modelski 
sistem. U osnovi algoritma nalazi se linearizacija nelinernog sistema u više radnih režima. Ovi 
radni režimi odabiraju se nakon temeljne analize sistema i analize referentnih signala nakon što se 
konstruira modelsko prediktivni upravljač za svaki linearizovan model sistema. Svi ovi upravljači 
grade jedan prebacivački modelsko prediktivan upravljač. Ovaj upravljač automatski prebacuje 
model sistema za predviđanje instrukcije korisnika.  

Ključne reči: Modelsko prediktivno upravljanje, Industrijski procesi, prebacivačko upravljanje, 
Industrijske aplikacije 

 

 


