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Abstract. In this paper we explore the influence of the state-space partitioning into 
specific regions, when designing switched fuzzy controllers, to the stability 
performance of the system. For examination purposes we have designed switched fuzzy 
model and appropriate switched fuzzy controller for a hovercraft vehicle, as a typical 
nonholonomic system. The design is made for four different ways of state-space 
partitioning. The simulation results verify the influence of the different partitioning of 
the state space to the control performance of the system. 
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1. INTRODUCTION 

Switched fuzzy systems are switched systems [3] that include fuzzy systems [1], [2] 
among its sub-systems or an alternative fuzzy-switching law, or both. Recent develop-
ments in this area promote a new direction in the control of dynamic systems [5], [6], [7], 
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], and it is clear that the field of 
switched fuzzy systems is becoming very popular. 

The idea for switched fuzzy systems was put forward by Palm and Driankov in 1998 
[4]. According to their previous research in the field of T-S fuzzy systems, Tanaka et al. 
introduced a new type of model-based fuzzy systems (switched fuzzy systems [5], [6], 
[7]), for the purpose of controlling more complicated real systems such as multiple 
nonlinear systems, switched nonlinear hybrid systems, and second order nonholonomic 
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systems. Parallel to these results, authors in [16], [17] and [18] propose a switched fuzzy 
model for continuous ([16], [17]) and discrete case ([16], [17], [18]). The switched fuzzy 
model is seemingly similar to the model proposed in [5], [6], [7], but there is a crucial 
difference (the details for this are given in [19]). 

After the basics of switched fuzzy systems were established, another problem arose, 
which was how to represent precisely the dynamics of the nonlinear system constructed by 
fuzzily blending the linear models in the consequent part of the rules. In continuance with 
the knowledge and the experience in the field of modelling of T-S fuzzy systems, the 
authors in [9] propose the use of “sector nonlinearity” concept. In [9], the switching fuzzy 
model is constructed by dividing the state space into quadrants and by finding the sector 
which can cover the nonlinear dynamics in each quadrant. However, dividing the state 
space into quadrants is not always suitable for nonlinear systems. In [15] switching fuzzy 
model construction with arbitrary switching planes is presented. A further question that 
arose was how to determine suitable switching planes for nonlinear systems. 

According to the results given in [9], [10], [11], [12], [13] and [14], it can be con-
cluded that switching fuzzy model construction depends on how to divide the state space. 
The purpose of this study is to explore the influence of state-space partitioning into re-
gions, when designing switched fuzzy controller, to the performance of the system. We 
will use the model of the hovercraft vehicle for design purposes. 

To begin with, in Section 2 we present the basic concepts of switched fuzzy systems 
with levels of structure, their representation modelling and stability analysis, taken from 
[5], [6], [7], [8]. In Section 3 we present the whole process of modelling and design of the 
switched fuzzy controllers, using the suggested simulation schemes in [20], for the 
hovercraft vehicle. In Section 4 we present the simulation results that verify the influence 
of the state-space partitioning to the stability of the system. In Section 5 we give the es-
sential conclusions of this study. 

2. BASIC CONCEPTS OF SWITCHED FUZZY SYSTEMS 

Here we will provide a short discussion of some of the key principles of the switched 
fuzzy systems, using the representation modelling given in [5], [6], [7], [8], the so-called 
“switched fuzzy system with levels of structure”. Detailed overview of the achievements 
in the field of switched fuzzy systems, followed by the comparative study for this kind of 
systems is given in [19]. 

The switching fuzzy model from [5], [6], [7], [8] is given with: 
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Here, m is the number of regions partitioned on the premise parts space. Nij(z(t)) is a 

crisp set, where 
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Milj is fuzzy set; x(t)  Rn is the state vector, u(t)  Rm is the input vector, y(t)  Rq is the 
output vector, Ail  Rnn, Bil  Rnm, and Cil  Rqn; z(t) = [z1(t),…, zp(t)] are known 
premise variables that can be functions of the state variables, external disturbances, and/or 
time. 

From (1), it is clear that the switching fuzzy model has two levels of structure: region 
rule level and local fuzzy rule level. The switching fuzzy model (1) is inferred by fuzzily 
blending the linear system models )()()( tuBtxAtx ilil   and switching the global T-S 

fuzzy models, defined on every region. 
In [5], authors propose a new PDC to design a stable switching fuzzy controller for the 

switching fuzzy system (1). The structure of the PDC fuzzy controller is given with (2), 
where the design purpose is to determine the local feedback gains Fil in the consequent 
parts. 
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Along with the representation modelling of switched fuzzy systems, authors in [5], [6] 
present LMI stability and LMI relaxed stability conditions for the system that consists of 
the switching fuzzy model (1) and the appropriate PDC controller, given with (2). Except 
the stability conditions, authors in [5]-[8] present the conditions for the constraints on the 
control inputs. 

3. T-S SWITCHED FUZZY CONTROLLER DESIGN FOR A GIVEN NONLINEAR SYSTEM 

 

Fig. 1. The model of a hovercraft vehicle [5] 

In this section we will use the simulation algorithms proposed in [20], in order to build 
a switched fuzzy controller for the hovercraft-vehicle. This scheme for designing switched 
fuzzy controllers can also be used for other nonlinear systems. 
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According to the hovercraft model from Fig. 1, the following state-space model of the 
hovercraft vehicle is given in [5]: 
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where f1(t) = fR(t) + fL(t), f2(t) = fR(t)  fL(t),  is the angle of the vehicle; l is the distance 
between the gravity and fans;  is the angle between the gravity and fans; fR and fL are the 
forces generated by the right and left side fans, respectively; M and I are the mass and the 

inertia, respectively, and )()(1 tytx  , x2(t) = y(t), )()(3 ttx    and x4(t) = (t) are the 

state-space variables. The control purpose is 0)(lim 


ty
t

 and 0)(lim 


t
t

, by manipulat-

ing fR(t) and fL(t). 

3.1. Switched fuzzy model 

We will derive the switched fuzzy model that satisfies the form of the switched fuzzy 
model with levels of structure, given with the equations (1). 

To make a switched fuzzy model for the nonlinear system (3), we will assume that 
(t)  [ 179     179]. We divide the premise variable space into three regions with non-
negative constant d. Therefore, the switched fuzzy model has three regions (Region 1-3) 
according to the premise variable (t). The local nonlinear dynamics in each region is 
represented by a T-S fuzzy model. We will use sector nonlinearity concept to determine 
the local linear models in every region [2]. 

Region 1 ((t)  d): In this region ((t)  [d    179]), the nonlinear function sin((t)) 
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a32 = sin(1790)  0.01. 
By aggregating the above results, according to relation (1), we construct the following 

switched fuzzy model for hovercraft model (3): 
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3.2. Controller design via switched PDC 

The switching fuzzy controller of PDC type for the switched fuzzy model (4) can be 
designed according to relation (2), having the form (5): 
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From (5), it is obvious that the design process depends on the local feedback gains Fil, 
which can be obtained if there is a feasible solution to the LMI stability conditions given 
in [5], [6]. 

4. SIMULATION RESULTS 

Using the proposed simulation scheme from [20], when the joined LMI conditions for 
stability and constraints on the control inputs, from [5]-[8], are applied, we can get a 
feasible solution for the values of matrices P and Fil (i = 1,2,3, l = 1,2). 

From the expressions of matrices A11, B11, A12, B12, A21, B21, A22, B22, A31, B31, A32, B32, 
it is evident that their values depend on the system parameters l, , M, and I, as well as on 
the constant d, which has to be defined prior to the modelling process. 
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Fig. 2. Control inputs fR(t) and fL(t) and the appropriate switching signal, when the joined 
LMI conditions for stability and constraints on the control inputs, from [5]-[8],  
are used, for different values of the parameter d. Initial conditions are 
x(0) = [0   1   0   1.5]Tand (M = 0.1,  = /4, I = 0.5, l = 0.1, C=0.5) 
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In [20], using the proposed concepts for building simulation algorithms for switched 
fuzzy control systems, we have shown the whole process of modelling, stability analysis 
and design of stabilizing switched fuzzy logic controllers for the hovercraft-vehicle. Using 
this typical nonholonomic system we have also explored the good performance of 
switched fuzzy systems in comparison to the ordinary T-S fuzzy systems. All simulation 
results in [20] were made for M = 0.1,  = /4, I = 0.5, l = 0.1, C=0.5, d = /50. 

 

Fig. 3. Values for y, using the control signals, shown in Fig. 2 

 

Fig. 4. Values for , using the control signals, shown in Fig. 2 

In this section we are investigating the influence of the way the state-space is parti-
tioned (four different ways of partitioning for four different values of d) to the values of 
the controlled parameters y(t) and (t). Fig. 3 and Fig. 4 show the outputs (y(t) and (t)) 
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for the four different inputs, given in Fig. 2-a,b,c,d, calculated respectively for the four 
different values of the parameter d. From the simulations it is evident that the smaller the 
value of this parameter is, the easier it is to achieve the control purpose. This certifies that 
partitioning the state space into appropriate regions plays a crucial role for the system 
performance. 

5. CONCLUSION 

We have used the model of a hovercraft vehicle for exploring the influence of the state-
space partitioning into regions when designing appropriate switched fuzzy controllers. As 
the hovercraft vehicle is a typical nonholonomic nonlinear system, it can be easily concluded 
that the state-space partitioning into specific regions plays an important role in system 
performance when designing switched fuzzy controllers for a given system. 
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UTICAJ PODELE PROSTORA STANJA NA REGIONE 
PRILIKOM PROJEKTOVANJA PREBACIVAČKIH FAZI 

KONTROLERA 

Vesna M. Ojleska, Tatjana Kolemishevska-Gugulovska,  
Georgi M. Dimirovski 

U ovom radu istražuje se uticaj podele prostora stanja u određenim regionima, prilikom 
projektovanja prebacivačkih fazi upravljača, na performanse stabilnosti sistema. Za svrhe 
ispitivanja projektovali smo prebacivački fazi model i odgovarajući prebacivački fazi upravljač za 
hovercraft vozila, kao tipični neholonomni sistem. Dizajn je napravljen za četiri različita načina 
podele prostora stanja. Rezultati simulacije verifikuju uticaj različitih podela prostora stanja na 
performanse upravljanja sistema.  

Ključne reči: upravljanje, hibridni sistemi, fazi sistemi, prebacivački sistemi, prebacivanje, 
prebacivački fazi sistemi 

 

 


