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Abstract. This paper presents a method for determining coefficients of n-th order 
difference equations that can represent mathematical models of n-th order discrete 
dynamical systems. In addition, error estimation in the sense of mean square and min-
max error is given. The proposed method has many advantages over other existing 
identification methods. Theoretical results have been confirmed by experiments. 
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1. INTRODUCTION 

In this paper, we use a model of discrete dynamical system in the form of difference n-
th order equation, using differences of the first and higher orders. Many papers [1]-[7] 
usually exploit ARMA, ARMAX models during identification of these systems. Practice 
has proven that ARMA and ARMAX models are quite suitable for identification, mod-
eling and analysis in the field of signal theory. Anyway, there still exists a need for a 
mathematical operator that is more convenient in the higher speed regimes. Later research 
in the field of the real time processing showed that the identified problems could be 
solved using the so-called delta operator, defined for a different sample times (discre-
tization periods). Delta operator actually represents the well-known Euler derivate ap-
proximation. It can be proved that discrete models in the form of difference equations 
with used differences i.e., delta operators are more convenient for identification of dis-
crete dynamical systems. These models have the following advantages. First, difference 
equation model gives a better basic description of the target system in the sense of its 
nature i.e., system’s dynamics (the first difference is analogue to system velocity, the 
second to system acceleration...). This is not the case with the other models because the 
basic signal and its shifts represent the same physical variable. The second advantage of 
difference model is that we can easily determine stationary conditions. Stationary states 
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can be determined by simple equalizing of all differences with zero. In such a way, the 
system of difference equations becomes the system of algebraic equations, from which we 
can easily determine all stationary states. 

2. MATHEMATICAL BACKGROUND 

Consider an unknown system defined by its linear difference n-th order equation: 

 1
1 1 0( ) ( ) ( ) ( ) ( )n n

n na y kT a y kT a y kT a y kT x kT
        , (1) 

where: y(kT) = y(kT)  y[(k  1) T], iy(kT) = (i1y(kT)), i=1,2,…n and there are N 
measures samples of system response.  

Necessary conditions for this identification method are initial steady state and N large 
enough to allow the occurrence of the stationary state in the system’s step response. So, 
the following boundary conditions must be valid: 

 1(0) (0) (0) 0ny y y      , (2) 

 1( ) ( ) 0ny NT y NT     , (3) 

These conditions mean that the system is in the steady state at the beginning (k=0) and 
the end (k=N) of identification process i.e., all the changes in dynamics are equal to zero. 

It is appropriate to use the following shortened notation: 
( ) ( ),    ( ) ( )x kT x k y kT y k  , so the system described with (1) can be written: 

 1
1 1 0( ) ( ) ( ) ( ) ( )n n

n na y k a y k a y k a y k x k
        . (4) 

First consider determining coefficients of the unknown system for the case of the unit 
step input: 

 
0

( ) ( )
i

x k k i




  , (5) 

and measured system response sequence y(0), y(1),…,y(N). 
In order to determine unknown coefficients a0, a1,…, an, we use boundary conditions 

(3). First we calculate a0, then a1,... To determine a0, we substitute k=N into equation (4): 

 1
1 1 0( ) ( ) ( ) ( ) ( )n n

n na y N a y N a y N a y N x N
        . (6) 

Now, after applying condition (3) to (6): 

 0 ( ) ( )a y N x N , (7) 

and 

 0

( )

( )

x N
a

y N
 . (8) 

After subtracting (7) and (4): 
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 1
1 1 0( ) ( ) ( ) [ ( ) ( )] ( ) ( ) 0n n

n na y k a y k a y k a y k y N x k x N
           . (9) 

Data sequence is finite, so N should be large enough. By summing (9) from 0 to N and 
applying boundary conditions (2) and (3): 

 
1

1 0 1
0

( ) [ ( ) ( )] 0
N

k

a y N a y k y N


   , (10) 

and 

 
1

0
1 1

0

[ ( ) ( )]
( )

N

k

a
a y N y k

y N 

  . (11) 

For determining coefficient a2 we can apply a similar procedure. We start with (9), 
and after multiplying with -1 summing over k2 from k1 to N, and applying conditions (3): 

 

2 1

1 2
2 1 2 2 2

1 2 0 1

( ) ( ) ( )

[ ( ) ( )] [ ( ) ( )] 0

n n
n n

N

k k

a y k a y k a y k

a y N y k a y N y k

 




      

    


 (12) 

Then, we sum (12) over interval (0, N), i.e., 

 
1

2 1

-1 -2
2 1 2 2 2

0 1 2 0 1

( ) ( ) ( )

[ ( ) ( )] [ ( ) ( )]

n n
n nN

N

k
k k

a y k a y k a y k

a y N y k a y N y k






       
 
     
 

 


 (13) 

and 

 
1 1 2 1

2 1 1 0 2
0 0

( ) [ ( ) ( )] [ ( ) ( )] 0
N N N

k k k k

a y N a y N y k a y N y k
  

       . (14) 

Finally, we obtain the relation for coefficient 2a : 

 
1 1 2 1

2 1 1 0 2
0 0

1
[ ( ) ( )] [ ( ) ( )]

( )

N N N

k k k k

a a y N y k a y N y k
y N   

      
  
   . (15) 

By applying a similar procedure, we can obtain the general relation, which is valid for 
all coefficients: 

 1

1

1
( 1)

( )

i
j

i i j j
j

a a S
y N






  , (16) 

where: 

 
1 2 1 10

[ ( ) ( )]
j j

N N N

j j
k k k k k

S y N y k
  

    , (17) 

and i = 1,2,…,n, j = 1,2,…i. 
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When the given boundary conditions (3) are not fulfilled, i.e., response (sequence of 
measured data) tends to infinity, then the described identification method needs to be 
modified. The first generalization is valid for cases when the response tends to infinity by 
approaching the sloped asymptote. In this case we assume difference equation in the fol-
lowing form: 

 1
1 1( ) ( ) ( ) ( )n n

n na y k a y k a y k x k
       . (18) 

We can see that difference (18) doesn’t have the lowest term a0y(k). In this case we 
have to subtract linear ramp function from measured response y(k): 

 1 1( )y k k . (19) 

Slope K1 can be determined with high accuracy by forming the difference 
y(N)  y(N  1) for large enough k (at the end of identification interval). This difference 
represents the slope of biased asymptotic line 1 i.e., the slope of the function y1(k). After 
determining function y1(k), we form the function y2(k): 

 2 1( ) ( ) ( )y k y k y k  . (20) 

Function y2(k) obtained by subtracting function y1(k) from the measured response y(k) 
has horizontal asymptote, i.e., conditions (3) are valid: 

 2
2 2 2( ) ( ) ( ) 0ny k y k y k       . (21) 

It is easy to show that y2(k) represents the solution of difference equation: 

 1 2
1 2 1 1( ) ( ) ( ) ( ) ( ) ( )n n

n na y k a y k a y k a K y k x k
          . (22) 

If we label the difference a1  1 with *
1a , then we can use the described method for 

determining unknown coefficients *
1 2, ,..., na a a  with satisfied conditions (2) and (3). After 

determining *
1a , we can define a1 as: 

 *
1 1 1a a   . (23) 

This procedure can be further generalized for the case of system responses with higher 
order asymptotes (for example second order – parabola). In such a case, we assume 
difference equation in the following form: 

 
2

( ) ( )
n

i
i

i

a y k x k


  . (24) 

In this case, also, boundary conditions (3) are not satisfied. In order to apply presented 
identification method we subtract measured response y(k) and function: 

 2
1 1 2( )y k k k   , (25) 

i.e., asymptotic parabola. Notice that: 
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1 1 2

2
1 2

( ) (2 1)

( ) 2

y k k

y k

   

 

 


. (26) 

In order to determine unknown coefficients 1 and 2, for large enough k, we observe 
three points y(N), y(N  1), y(N  2) that completely define asymptotic parabola y1(k). If 
we subtract this function from the measured response, we obtain a function that satisfies 
conditions (2) and (3). Unknown coefficients in equation (24) are now determined by the 
already described method. 

In a similar manner, we can identify systems for the cases of responses with order r 
asymptotes. Then, we assume equation: 

 ( ) ( )
n

i
i

i r

a y k x k


  , (27) 

and subtract function y1(k) = 1k + 2k
2 +  +rk

r (this function is determined via r+1 
points) from system response. 

3. CASE STUDY 

In order to demonstrate the efficiency of the proposed identification algorithm, we will 
consider three-tank hydraulic system manufactured by “Inteco”, Poland [8] (Fig. 1). 

The multitank system relates to liquid level control problems commonly occurring in 
industrial storage tanks. It comprises three separate tanks fitted with drain valves. The 
separate tank mounted in the base of the set-up acts as a water reservoir for the system. 
Some of the tanks have a constant cross section, while others are spherical or conical, thus 
having variable cross sections (this creates the main nonlinearities of the system). Several 
issues have been recognized as potential impediments to high accuracy modeling and 
control of level or flow in the tanks: nonlinearities caused by shapes of tanks, saturation 
type nonlinearities (introduced by maximum or minimum allowed level in tanks), valve 
geometry and flow dynamics, pump and valves input/output characteristic curve. 

During identification of the described hydraulic system, we considered liquid level in 
one of the tanks and measured its step response. We performed two separate experiments. 
One experiment used pure information from the liquid level sensor and the other used the 
filtered information. The purpose of the low pass filter was to purify the information from 
the sensor that was prone to frequent changes caused by the turbulent water surface. The 
goal of the experiments was not only to validate the proposed method but also to 
investigate algorithm accuracy in the presence of the measurement noise and other 
disturbances. System response in the presence of the sensor noise is given in Fig. 2. 
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Fig. 1. The Multitank system by Inteco 

 

Fig. 2. Experimental step response in the presence of noise 

After applying the identification procedure described in the previous chapter for the 
case of noiseless response, we have identified the system in the form of the following 
third order difference equation: 

 3 26.1 ( ) 7.2 ( ) 1.4 ( ) 0.25 ( )y k y k y k y x k        (28) 
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Simulated step response for the system defined with (28) is shown in Fig. 3. 
After applying the same identification algorithm for the experimental system step re-

sponse in the presence of noise, we have obtained the following difference equation: 

 3 27.071 ( ) 7.012 ( ) 1.42 ( ) 0.248 ( )y k y k y k y x k        (29) 

Simulated step response for the system defined with (29) is shown in Fig. 4. 

 

Fig. 3. Simulated step response of identified system 

 

Fig. 4. Simulated step response of identified system in the presence of noise 

We can see from Figures 3 and 4 almost perfect responses match and small identifi-
cation error when we use filtered response for identification. 



66 S. NIKOLIĆ, B. DANKOVIĆ, D. ANTIĆ, Z. JOVANOVIĆ 

Figure 5 demonstrates identification error when we use noisy response for identification. 

 

Fig. 5. Identification errors with respect to parameters indexes 

We can notice in (28) higher identification error for higher order coefficient opposite 
to the coefficients in the (29) obtained after identification with filtered noise. Figure 5 
shows the error between parameters of (28) and (29) (error between real and identified 
systems), given in percents, with respect to parameters indexes. 

4. CONCLUSION 

In this paper we presented the improved method for the identification of discrete sys-
tems regarding systems with astatism of the first, second and higher orders. We have also 
considered the influence of consecutive summations on the accuracy of system identifi-
cation.  

Experiments with the hydraulic system were performed and we proved high identifi-
cation accuracy in the noiseless environment. When noise is present, identification error is 
small for the certain number of coefficients with lower indexes. Depending on the number 
of summations, identification error rapidly increases for the coefficients in the difference 
equation with the higher indexes, as expected. 
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O IDENTIFIKACIJI DISKRETNIH SISTEMA 

Saša Nikolić, Bratislav Danković, Dragan Antić, Zoran Jovanović 

U ovom radu je predstavljen metod za određivanje koeficijenata diferencne jednačine n-og 
reda, koja predstavlja matematički model diskretnog dinamičkog sistema n-og reda. Takođe je 
data procena greške u smislu srednje kvadratne i min-max greške. Predloženi metod ima mnoge 
prednosti u odnosu na postojeće metode identifikacije. Teoretski rezultati su potvrđeni 
eksperimentima.  

Ključne reči: diskretni sistemi, identifikacija, srednje kvadratna greška, hidraulički sistem 

 

 


